West Midlands Air Quality Conference

Working in partnership for cleaner air in the West Midlands

Welcome

Siobhan Bassford

Chief Communications and External Affairs Officer

Welcome

Richard Parker

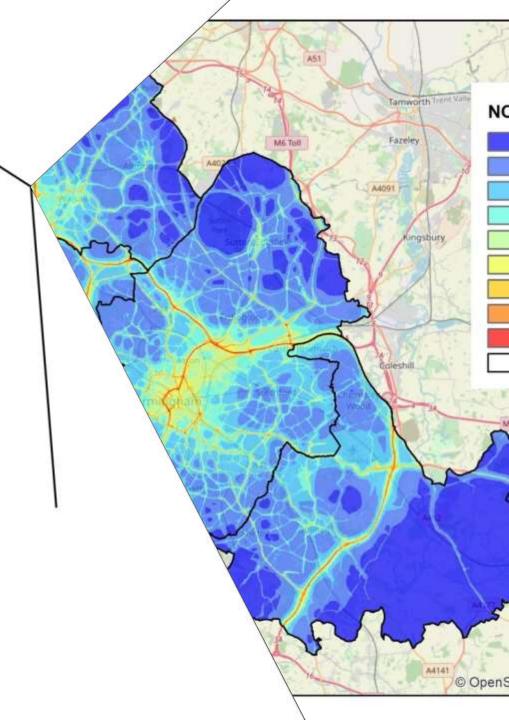
Mayor of the West Midlands

Keynote speaker

Professor William Bloss

Professor of Atmospheric Science at the University of Birmingham

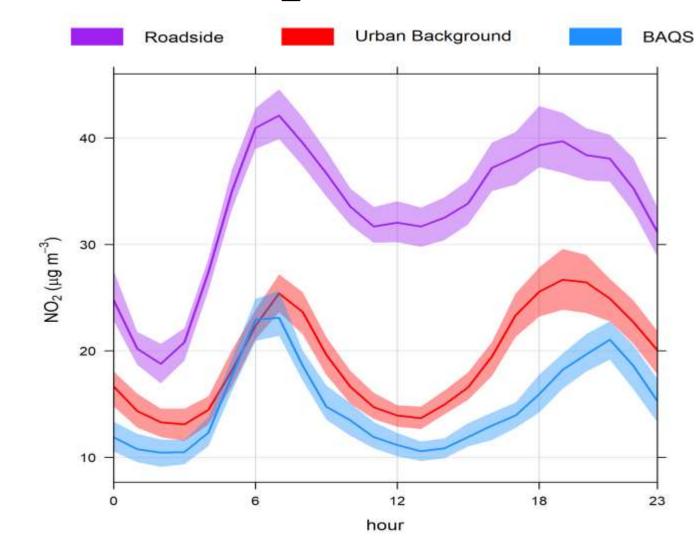
West Midlands Combined Authority

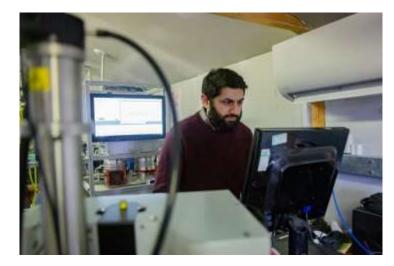


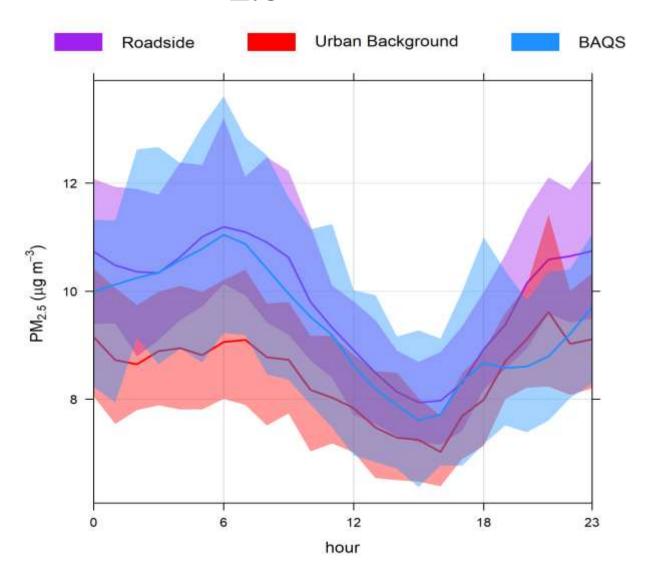
Towards Cleaner Air for the West Midlands

William Bloss & the WM-Air Team

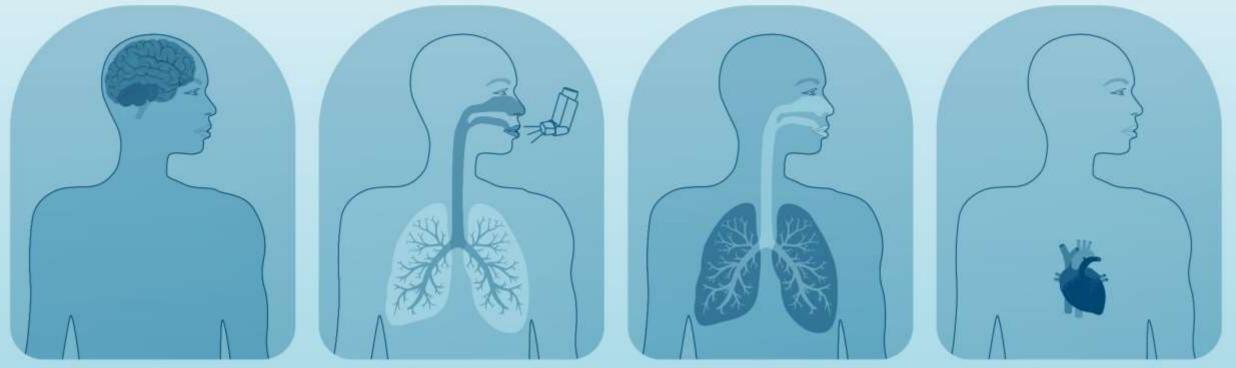
WM-Air Partnerships


Not exhaustive !


Air Pollution & Time of Day: NO₂



Air Pollution & Time of Day: PM_{2.5}

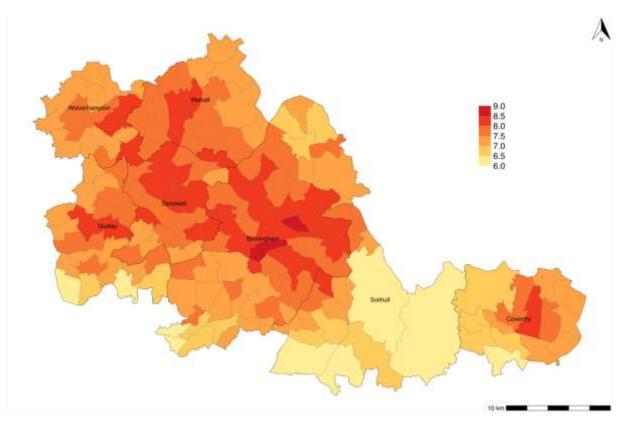


UNIVERSITYOF

BIRMINGHAM

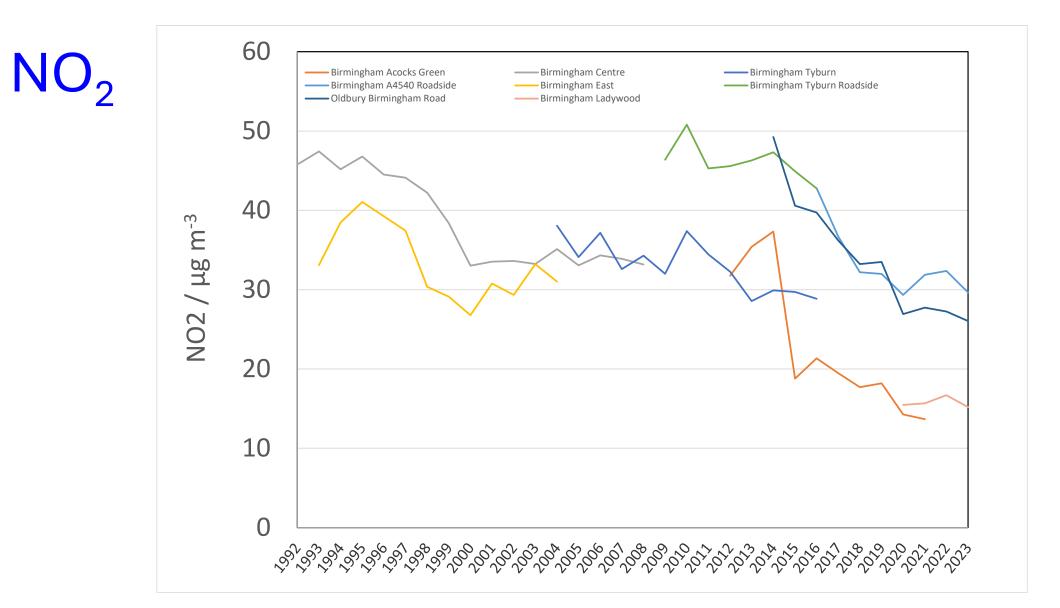
Health burden due to air pollution

Air pollution causes up to 2,300 early deaths each year in the West Midlands, as well as:

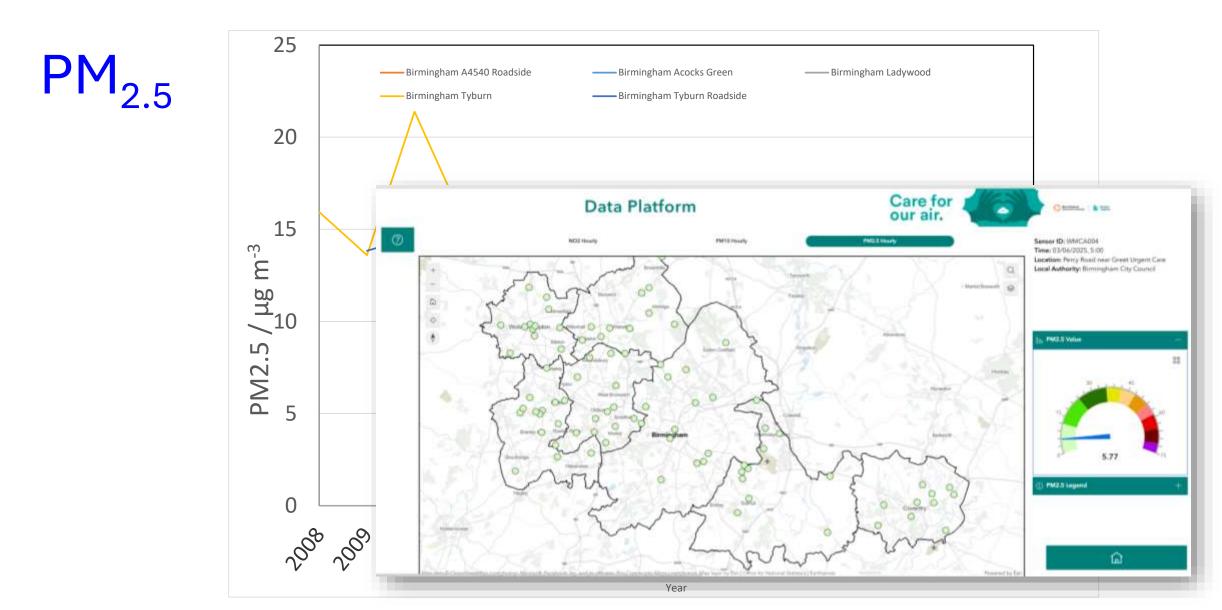

Stroke in up to 1,000 people each year Asthma in up to 3,300 people each year

Lung cancer in up to 300 people each year

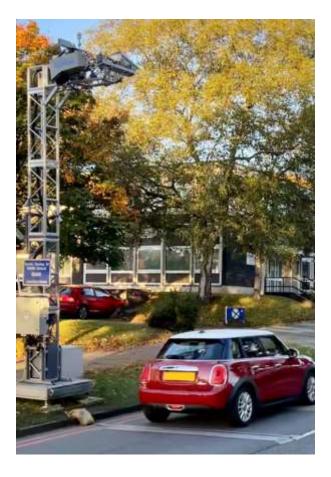
Heart disease in up to 1,400 people each year

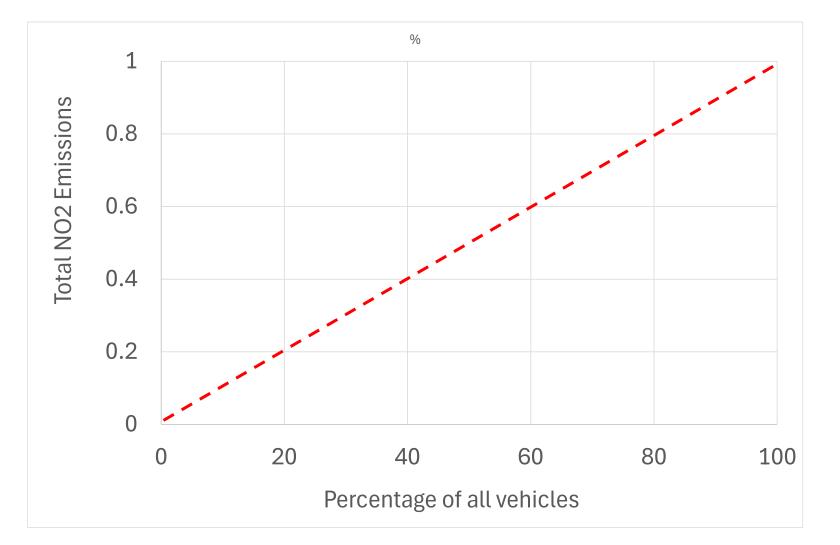

Health Impacts: West Midlands

Percentage of mortality attributable to air pollution in the WMCA area


Regional Trends in Air Quality

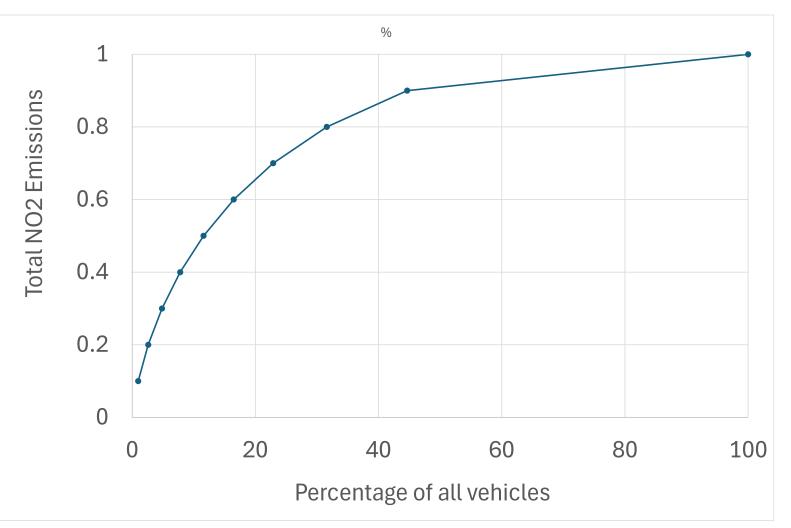
Regional Trends in Air Quality




Regional Trends in Air Quality

Cumulative Emissions

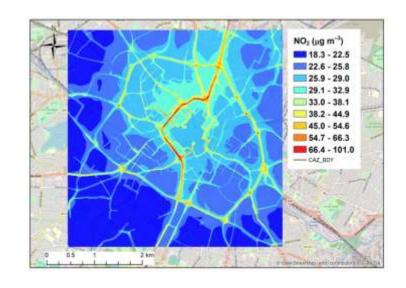
• Diesel Cars



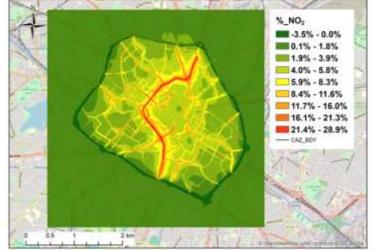
Target "super-emitters"

Cumulative Emissions

• Diesel Cars



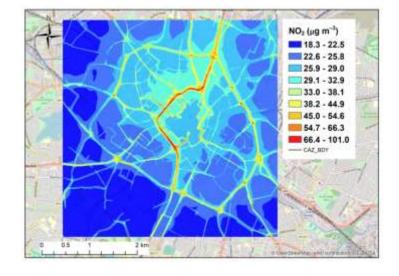
• WM-Air measurements: Omid Ghaffarspand, Francis Pope


Clean Air Zone

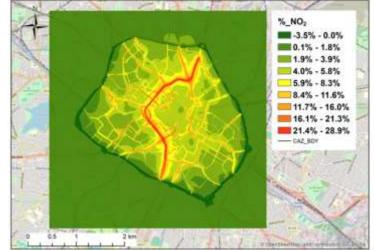
Pre-CAZ

Post-CAZ:

- Fleet change
- CAZ traffic levels
- Ring road effects



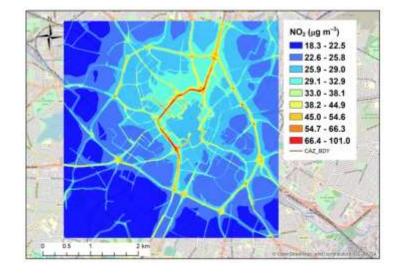
Clean Air Zone


- CAZ works to get city centre NO₂ < 40 μg m⁻³
- No measurable effect on PM_{2.5} (as expected)
- CAZ area is small...

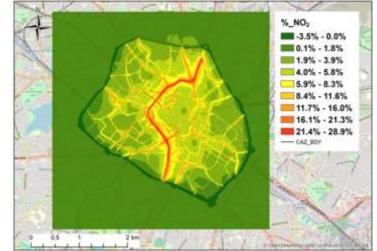
Pre-CAZ

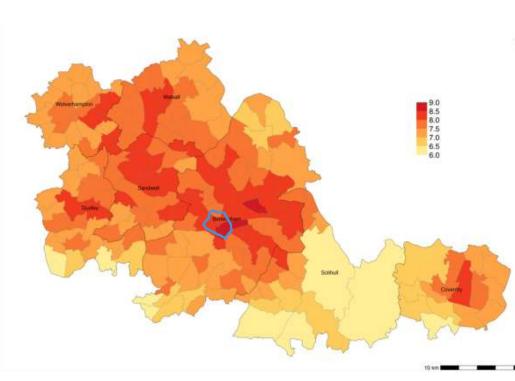
Post-CAZ:

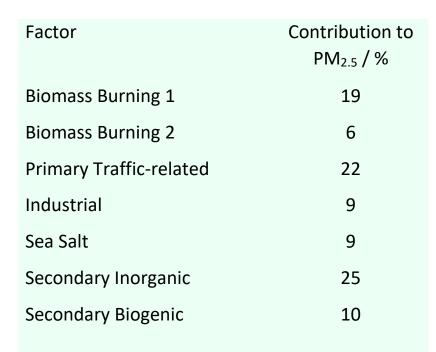
- Fleet change
- CAZ traffic levels
- Ring road effects

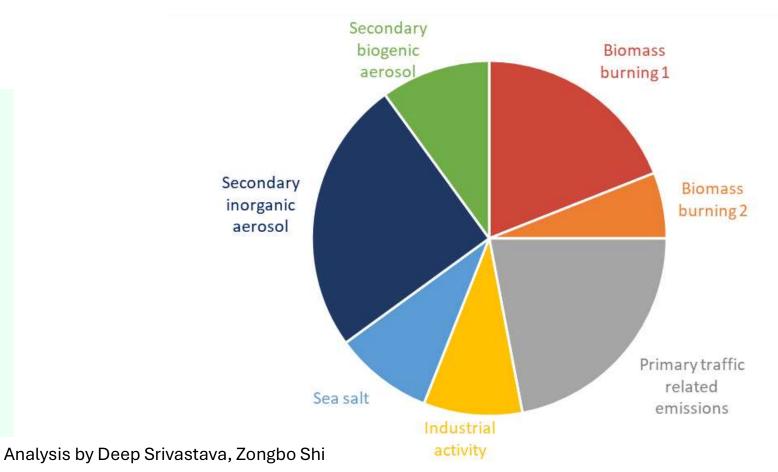


Clean Air Zone


- CAZ works to get city centre NO₂ < 40 μg m⁻³
- No measurable effect on PM_{2.5} (as expected)
- CAZ area is small...

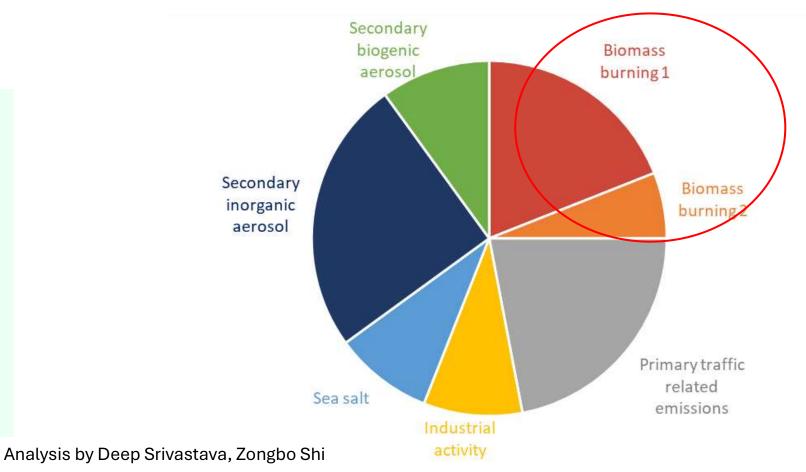

Pre-CAZ


- Fleet change
- CAZ traffic levels
- Ring road effects



$PM_{2.5}$ Sources

- Sources of $PM_{2.5}$ in West Midlands air
- Derived from WM-Air measurements



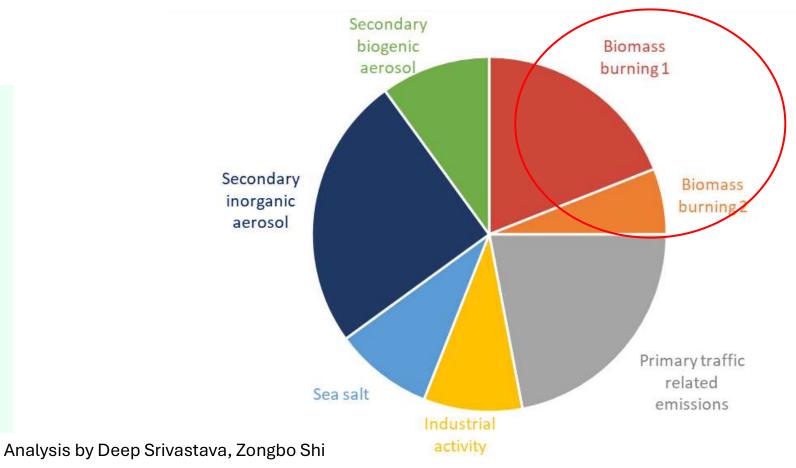
$PM_{2.5}$ Sources

- Sources of $PM_{2.5}$ in West Midlands air
- Derived from WM-Air measurements

Factor	Contribution to PM _{2.5} / %
Biomass Burning 1	19
Biomass Burning 2	6
Primary Traffic-related	22
Industrial	9
Sea Salt	9
Secondary Inorganic	25
Secondary Biogenic	10

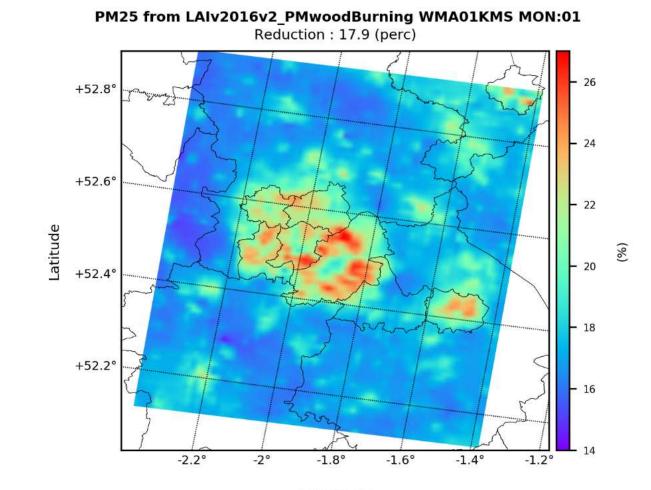
• Sources of PM_{2.5} in West Midlands air

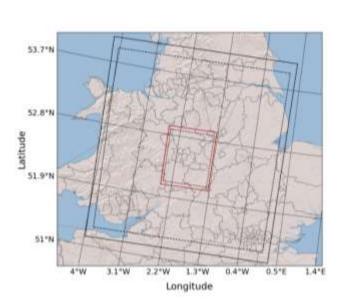
• Derived from WM-Air measurements


Factor	Contribution to PM _{2.5} / %
Biomass Burning 1	19
Biomass Burning 2	6
Primary Traffic-related	22
Industrial	9
Sea Salt	9
Secondary Inorganic	25
Secondary Biogenic	10

PM_{2.5} Sources

Not just traffic


Behaviour Change

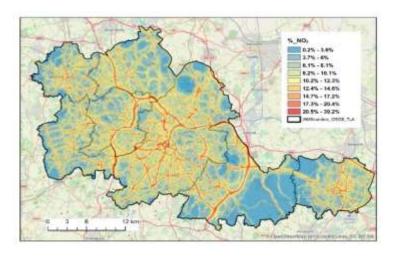


Regional Action

• Model: Reduce solid fuel emissions by 85%, in the WMCA only

WM-Air modelling by Andrea Mazzeo, Jian Zhong, CERC

Longitude


Regional Action

Local and Regional actions can be very effective WMCA AQ Framework: Mechanisms

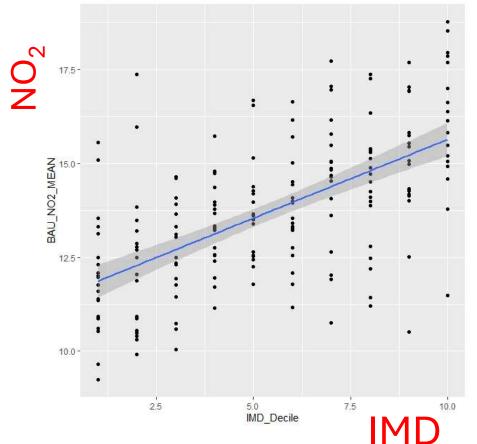
West Midlands Combined Authority **Air Quality Framework** Model: Reduce solid fuel emissions by 85 **Reference Document** November 2023 PM25 from LAIv2016v2 +52.8 53.7°N +52.6 52.8"N Latitude Latitude 51.9"N +52.451"N +52.2° 4*W 0.4°W 3.1°W 2.2*W 1.3*W 0.5*E 1.4* Longitude -2.2° -2° West Midlands Combined Authority Greener Together WM-Air modelling by Andrea Mazzeo, Jian Zhong, CERC

Air Quality and Climate Change

- Fossil fuel combustion source of CO₂, and of many air pollutants
- Net Zero policies can deliver a "win-win"

NO₂ change:

Bus & 50% Light Vehicle electrification


• Who Benefits ?

Local and Regional Action = Local and Regional Clean Air / Health+

Net Zero simulations by Jian Zhong

Who is impacted?

• Ward average NO₂ vs Index of Multiple Deprivation (IMD)

IMD analysis by James Hodgson

Ambition

• National limits (Air Quality Objectives)

NO₂ 40 μ g m⁻³ PM_{2.5} 20 μ g m⁻³ (10 μ g m⁻³ and 35% reduction by 2040)

• World Health Organisation guidelines (protection of health)

NO₂
 PM_{2.5}
 10 μg m⁻³
 5 μg m⁻³

Can we go further or faster?

Can we reduce the environmental health inequalities between communities?

Reflections from WM-Air

- Air pollution causes a substantial regional health burden... ...but our air is getting cleaner
- Data: to identify pollution sources, nudge behaviour... sensor network
- CAZ, Woodburning, in-vehicle (indoor), scope for regional action
- Air Quality and Climate Change but the AQ benefits are local
- Least advantaged communities bear the greatest air pollution burden
- Targets and ambition

 WM-AIR@CONTACTS.BHAM.AC.UK

 WM-AIR@CONTACTS.BHAM.AC.UK

 WM-AIR_UOB

 WM-AIR.ORG.UK

Keynote speaker

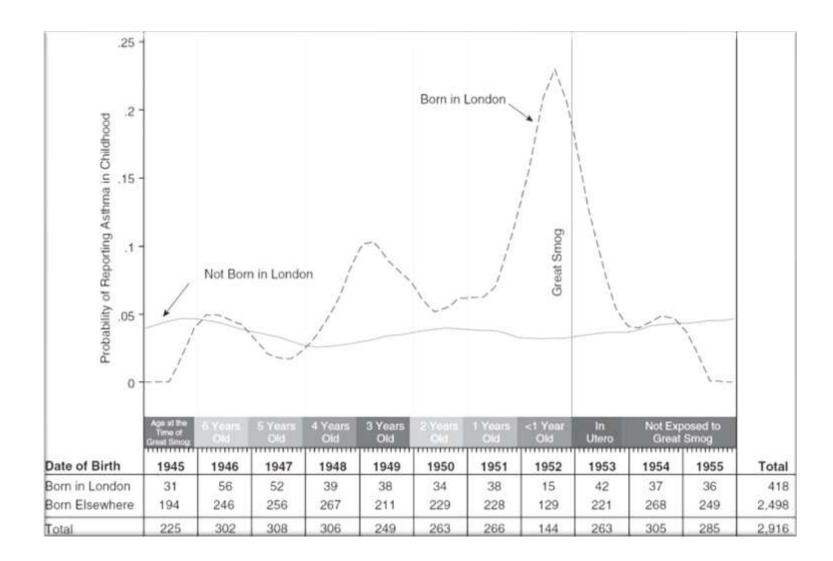
Dr Abigail Whitehouse

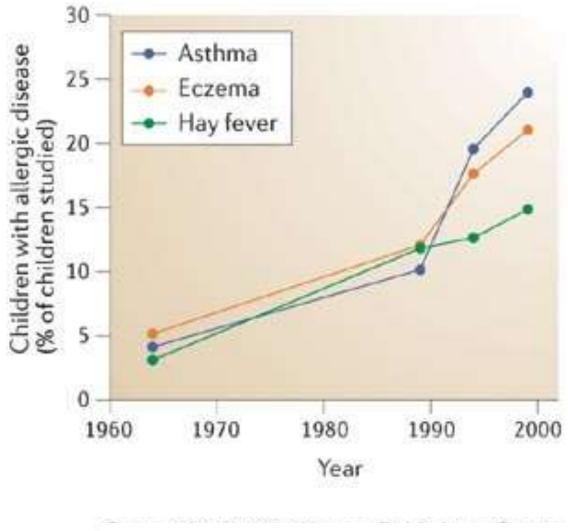
Senior Clinical Lecturer and Respiratory Paediatrician, Queen Mary University of London

Translating research into clinical practice

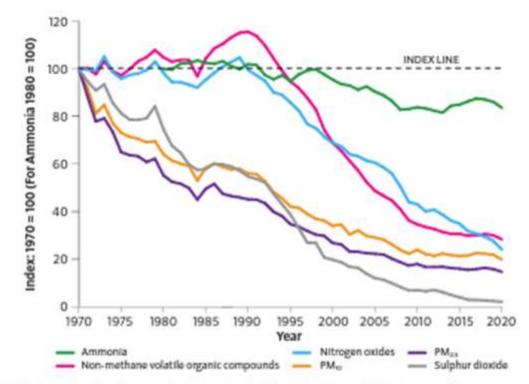
The Children's Environmental Health Service

Dr Abigail Whitehouse


Senior Clinical Lecturer and Honorary Paediatric Respiratory Consultant

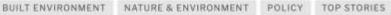

Queen Mary University of London (QMUL) and Royal London Hospital

What is the problem we are trying to address?



CHILDHOOD ASTHMA

Devereux et al. 2006



Note: The figure shows trends in annual emissions of particulate matter (PM₁₀ and PM₂₃), nitrogen oxides, ammonia, non-methane volatile organic compounds, and sulphur cloxide, 1070 to 2020, expressed as a percentage change from the base year of 1070 (for ammonia the base year is 1980).

Source: Ricardo Energy & Environment, Defra (2022)

Figure 2: Trends in UK emissions of air pollutants 1970 to 2020

Air pollution isn't hitting everyone equal

People of colour and the poor are suffering from more air pollution says campaign group

Dpinion Culture Sport

crisis Wildlife Energy Pollution

Early air pollution exposure affects health in adolescence, study finds

UCL study of 9,000 children also found marked inequality, with people from ethnic minority backgrounds having higher exposure risk

People

One in 20 Wigan deaths 'due to air pollution'

By Clara Margotin

2

Published 22nd May 2025, 15:45 8ST

Comment

Air pollution linked to increased risk <u>of epilepsy – study</u> red: May 16 2025

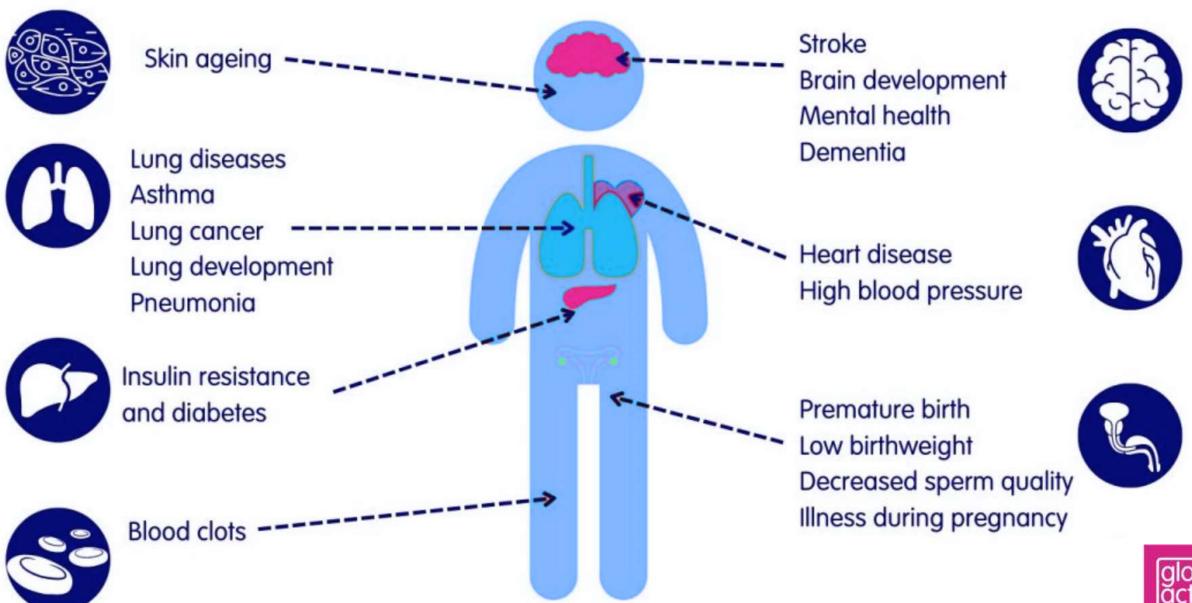
BMI changes in adolescence mediate the effect of air pollution on metabolic health

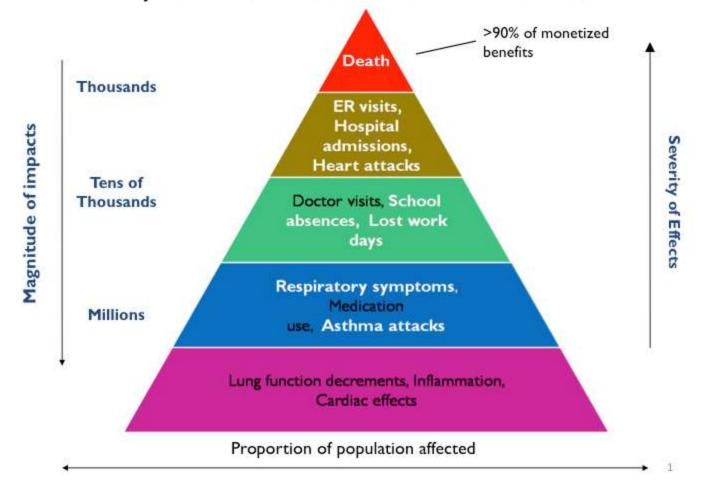
3= Reviewed

Your bad asthma might be due to your mother's exposure to air pollution

Keck School of Medicine of USC

Download PDF Copy


May 20 2025

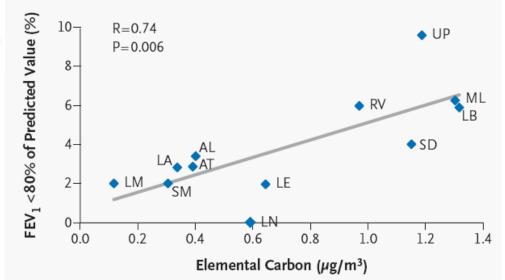

"Our homes provide the living environment that dictates our future health"

Sir Michael Marmot Director, Institute of Health Equity

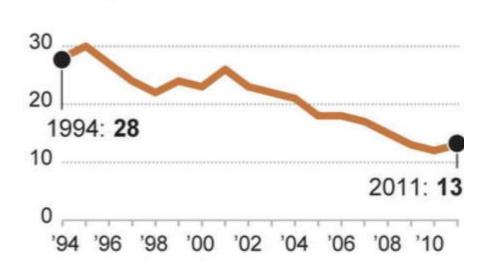
The health harms of air pollution

A "Pyramid of Effects" from Air Pollution

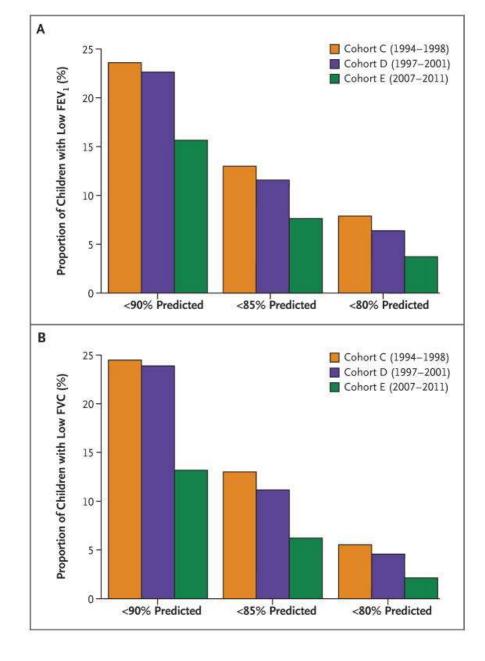
BenMAP-CE


Can we improve an individuals exposure to air pollution?

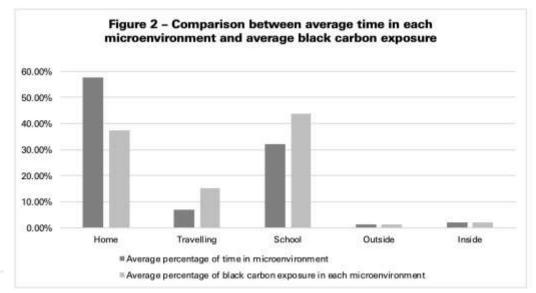
Childrens Health Study - California


The NE	WE	NGL	AND
JOURNA	AL of	MED	ICINE
ESTABLISHED IN 1812	MARCE	1 5, 2015	VOL. 372 NO. 10

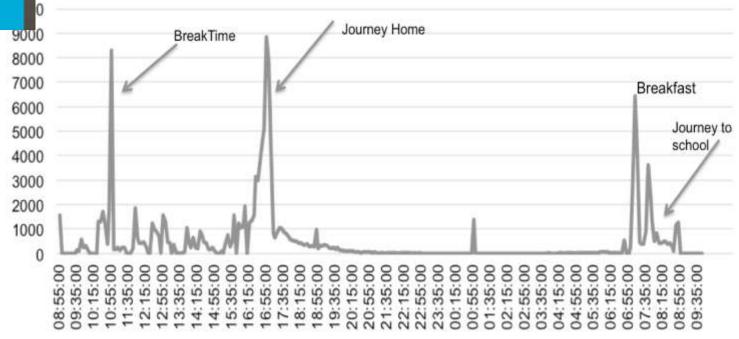
Association of Improved Air Quality with Lung Development in Children


W. James Gauderman, Ph.D., Robert Urman, M.S., Edward Avol, M.S., Kiros Berhane, Ph.D., Rob McConnell, M.D., Edward Rappaport, M.S., Roger Chang, Ph.D., Fred Lurmann, M.S., and Frank Gilliland, M.D., Ph.D.

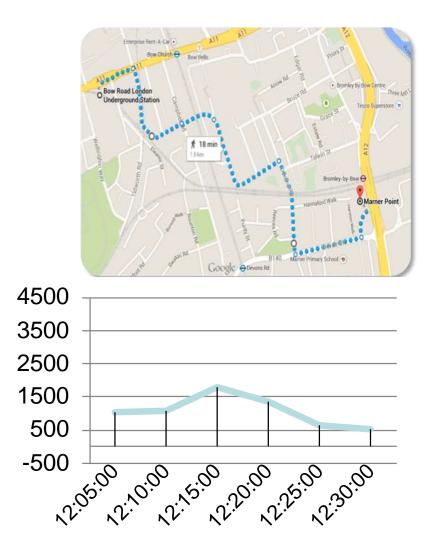
Gauderman NEJM 2004



As air pollution* declined...



Gauderman New England Journal of Medicine 2015



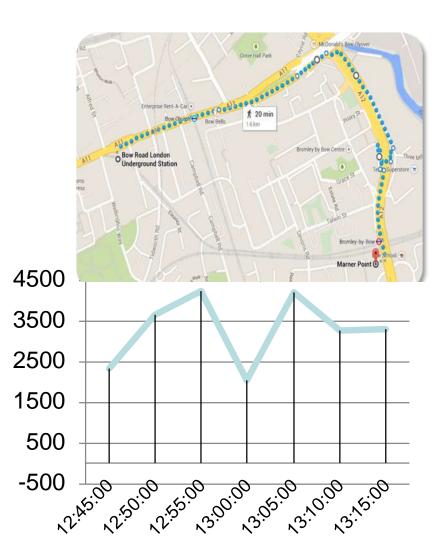
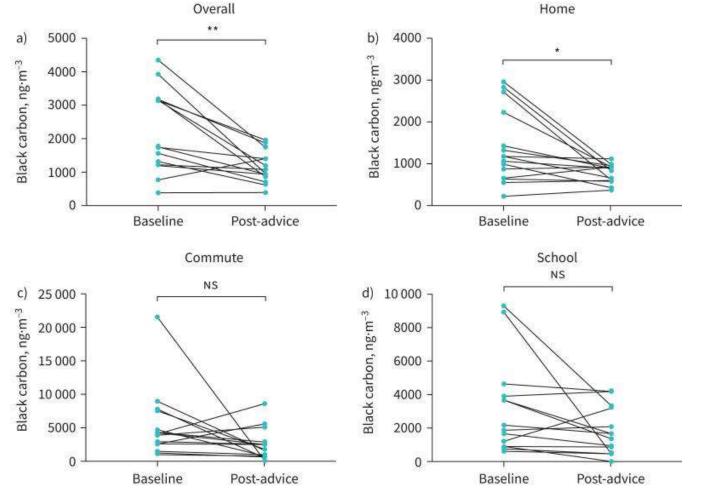


Figure 1 - An example of a child's exposure to air pollution over 24 hours



low pollution routes

Altering Exposure

Koh et al 2021, ERJ Open

Interventions

Technological Innovations

- Artificial intelligence models for NO₂ forecasting.

- Development of indoor air quality monitoring apps for asthma management.

Educational Interventions

focus on increasing awareness and promoting behavioral changes

Personal Air Quality Improvement

- Use of HEPA filters

- Residential air quality monitoring and filtration systems.
- Air quality warning systems for vulnerable populations.
- Cleaner air during desert dust storms and wildfire smoke protection strategies.
- Teaching parents about cooking ventilation and its impact on indoor air quality.

Climate Change Policies

- Electric vehicle sales and Zero Emission Vehicle (ZEV) mandates.

- Health benefits of reduced air pollution from climate policies in the UK.

- London's Ultra Low Emission Zone and its effects on active travel to school.

Green Spaces and Urban Planning

- Long-term effects of urban forests on PM10 reduction and asthma outcomes.

- Associations between greenspace exposure and childhood asthma (e.g., school surroundings, intra-city studies).

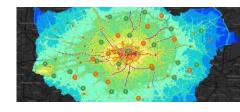
School Environment

- Ventilation improvements in schools post-COVID-19.
- Polluted playgrounds and school building impacts on respiratory health.
- Meeting particle-level guidelines inside schools with enhanced ventilation conditions.

Monitoring

Home assessment

School Environment


Education

Mitigation report

Personalised triggers

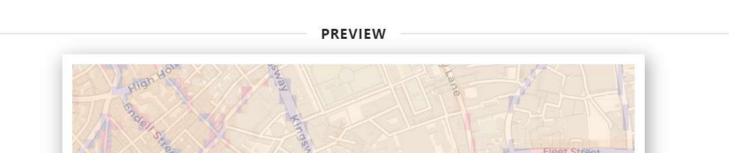
Environmental health questionnaire

Barts Health MHS

NHS Trust

What can we easily add in to clinic?

London Air


Annual Pollution by Location

london Air

INTRODUCTION

This map shows the annual mean pollution for NO2, PM10 and PM2.5 across London, the data is based on most recent year for which an accurate model is available, 2016.

You may explore the air pollution in London by clicking on an area of the map or entering a postcode below.

This map was used with permission from the lineater Lundon Authority and Transport for London, who fund, develop and maintain the Lundon Atmospheric Emissions inventory. For more information please visit data.knidon.gov.ik.

EU ANNUAL MEAN LIMIT VALUES

WHO ANNUAL MEAN LIMIT VALUES

- NO2 is 49 up/m¹ exceeding the BU limit of 40 up/m¹
 PM10 is 27 up/m¹ passing the EU limit of 40 up/m¹
- NO2 is 49 pg/m³ exceeding the WHO limit of 40 pg/m³
 EM10 is 27 µg/m³ exceeding the WHO limit of 20 µg/m³

Mould

North East London

Dear housing officer / housing association / landlord/ whom it may concern

I have asked 's family to this pass this letter on to you as I have concerns that their current housing situation is having a negative impact on their health.

has a diagnosis of asthma/wheeze. They also have severe allergic rhinitis and eczema. It is my belief that the family's current housing situation is significantly contributing to their health condition(s) and the amount of medication they are requiring to control them.

My air pollution plan:

Plan out the actions that you and your family can take to reduce the impact of air pollution on your health	On all days	On high pollution days
I will use my inhaler as recommended by my GP or asthma nurse		
I will treat air pollution the same way I treat other asthma triggers		
We will walk, cycle or scoot to school		
We will look up quieter routes to avoid roads with heavy traffic		
We will turn on the extractor fan when cooking		
We will swap our cleaning products to low chemical options		
We will open the window when cooking		
We will open the windows when cleaning		
We will always turn the engine off when our car is stationary		
If we paint, we will check it is labelled "low VOC"		
We will leave the car at home when we can		
We will ask people not to smoke in our home		

This leaflet was designed in collaboration with: children with asthma, their families, GPs and clinicians. Thank you to Tower Hamlets Together and Global Action Plan as the original creators.

Air Pollution & You

Air pollution can worsen asthma symptoms including coughing, wheezing and breathlessness. The actions below can help:

For more information on how air pollution can affect your health, and how to reduce your exposure, visit www.cleanairhub.org.uk/tower-hamlets

Parental Concern	Sex			
	Male	Female	Total	
Total	36	24	60	
Mould Exposure	29	20	49	
Mould Exposure %	80.56%	83.33%	81.67%	
Air Pollution Exposure	36	24	60	
Air Pollution %	100%	100%	100%	

Sex		
Male	Female	Total
36	24	60
25	18	43
15	6	21
27	18	45
22	14	36
31	14	45
36	23	59
3	4	7
1	3	4
1	1	2
28	23	51
2	1	3
5	1	6
2	0	2
	Male 36 25 15 27 22 31 36 3 1 1 1 28 2 5 5	Male Female 36 24 25 18 15 6 27 18 22 14 31 14 36 23 3 4 1 3 1 1 28 23 2 1 5 1

	Sex		
	Male	Female	Total
Total	36	24	60
Home to Busy Road			
Less than 5 mins	26	19	45
5 to 10 mins	10	4	14
More than 10 mins	0	1	1

Property Type

	Flat	19	17	36
	House	13	4	17
	Maisonette	3	3	6
	Room	1	0	1
Housing Provider				
	Council	26	17	43
	Rented	7	6	13
	Owned	3	1	4

Other projects

Housing referral pathway

- ICB
- Council
- Housing Providers

Newham Pharmacy Project

- DEFRA funded
- AP education with inhaler prescription collection

Public Education and Engagement

- Co-design of mitigation strategies
- PPI groups
- Community events

Clinician Education

- Paediatrics
- Respiratory

Research

- CHERISH Playground
 - exposures
- NESTED nursery

exposures

Aspirations.....

- Air quality and health fellowship
- Roll out of environment clinic

RCPCH Air Pollution Companion

Knowledge hub

For anyone interested in learning more about air pollution and its impact on child health.

Knowledge hub

Communication toolkit

For child health professionals who want to make talking about air pollution 'business as usual'.

Communication toolkit

Advocacy toolkit

For health professionals who want to advocate for broader systemic change to improve air quality.

Advocacy toolkit

Case studies

Explore our library of case studies highlighting projects and professionals working to improve air quality.

Clean air community

Discover more about our national and international networks focused on air pollution and child health.

Clean air community

Clean air clinics

For policy makers, NHS leaders and child health professionals. Read more about these innovative clinics.

***RCPCH**

Exploring air pollution with CYP and families in clinic

Daily Air

Quality

Index

Royal College of Paediatrics and Child Health (cading the way in Children's Health

1. Pre-consultation

At home Travel to hospital

Hospital website Hospital phone systems Text messaging Appointment reminders Invitation letter to routine regular reviews

Posters/screens/noticeboards Patient registration forms

2. Consultation

Setting the scene

Show curiosity: Understanding the context and the patient experience

One size does not fit all: Make it developmentally appropriate, relatable and individual.

Keep an open mind: Your patients may know more than you.

Prepare: Look at the patient's address. Some hospitals have linked patient postcodes to air quality levels, or you could look on Google Maps to see if they live on a main road, near industry or next to a park.

Model behaviours: Have plants in clinic or leave your bike helmet visible.

History and examination

Tease out symptoms and signs that may be caused/exacerbated by air pollution

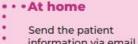
Start a conversation about transport: For example "How did you travel to your appointment this morning?"

Be specific about potential triggers:

"Do you notice a change in your chest symptoms when you're around traffic or fires?" "Do you find your allergies/eczema change when you're inside your home/when you go away?"

Show you understand where they live and delve deeper:

"I can see you live on [insert name] road. That looks like it might be a bit busy at rush hour. Does that affect your breathing at all?"


Make asking about housing matter of fact: "Who lives together at home? Can you tell me more about your house – is it rented/privately owned? Do you have any concerns about mould/damp/ventilation?"

3. Post-consultation

Pharmacy

Posters/screens/noticeboards Labels on medication

Travel home

information via email or text

Include a section on air pollution advice in the clinic letter

Global Action Plan 'Actions on air pollution' checklist

Management plan

Incorporate achievable goals in the plan

Acknowledge that air pollution might be contributing to their health problem and **talk through some potential solutions together** – you could use a checklist to help guide this conversation.

Use specific details from the history to tailor the

plan: "You mentioned that [child]'s breathing is worse in the house. This leaflet lists lots of potential triggers; could you try keeping a diary to see whether anything seems to set off [his/her] symptoms?"

Give advice that is within their sphere of influence:

"It's great that you already walk to school. Did you know that even by walking on the side of the pavement away from the cars, it reduces your exposure to air pollution?"

Signpost to resources:

"Did you know there's an air quality index – a bit like a weather forecast?" Show the young person the Daily Air Quality Index (DAQI) on their phone.

This resource is not comprehensive but aims to start conversations.

Made by the RCPCH Clean Air Fund partnership team in collaboration with RCPCH &Us Climate Changers and the RCPCH Clean Air Network

© The Royal College of Paediatrics and Child Health 2024. Registered charity in England and Wales (1057744) and in Scotland (SC038299).

ind Act

introduce activity:

"I see you're wearing a [insert team] football shirt! Do you play at school/ college? It's great for your physical and mental health! Do you do any other activity?"

RCPCH Air Pollution Companion

Use visual cues to

NHS Trust

Thank you

Any Questions?

Professor Jonathan Grigg Dr Lisa Miyashita Dr Norrice Liu Dr Gioia Mosler Dr Charlie Moorcroft

Summary of West Midlands Air Quality Framework and Defra project

Jackie Homan

Head of Environment, WMCA

West Midlands Combined Authority

Greener Together

WMCA air quality priorities: delivering the Framework

The West Midlands will have cleaner air that is safe for all people, no matter where you live in the region, resulting in significantly improved public health and environmental outcomes

There are **143 actions** in our air quality framework – these are the initial priorities:

- Monitoring and data, including a stretch target
- Behaviour change and providing consistent information
- Working with vulnerable groups, including an alert system
- Schools programme
- Supporting decision makers
- Renewal of planning guidance

West Midlands AQ Framework Delivery Group

- Aim: to help strategically and collaboratively align air quality work in the region, including prioritised Framework actions.
- Meets quarterly and chaired by UKHSA
- Task and Finish groups have been set up with key representatives from regional stakeholders

What next...

- Working with Defra to understand how our work can be supported
- Additional funding to the West Midlands to support air quality projects
- Rolling out air quality literacy to increase awareness amongst policymakers
- Identifying ways to scale behaviour change projects
- Launching the alert system
- Ensuring the data is reliable and remains at the highest quality
- Building air quality into community projects
-and more!

Break

11:00 - 11:15

Partner Delivery

Working in partnership for cleaner air in the West Midlands

Panel

Elizabeth Stephens

Air Quality Manager, Sandwell Metropolitan Borough Council

Dr Suzanne Bartington

Clinical Associate Professor in Environmental Health, University of Birmingham

Dr Prasad Nagakumar

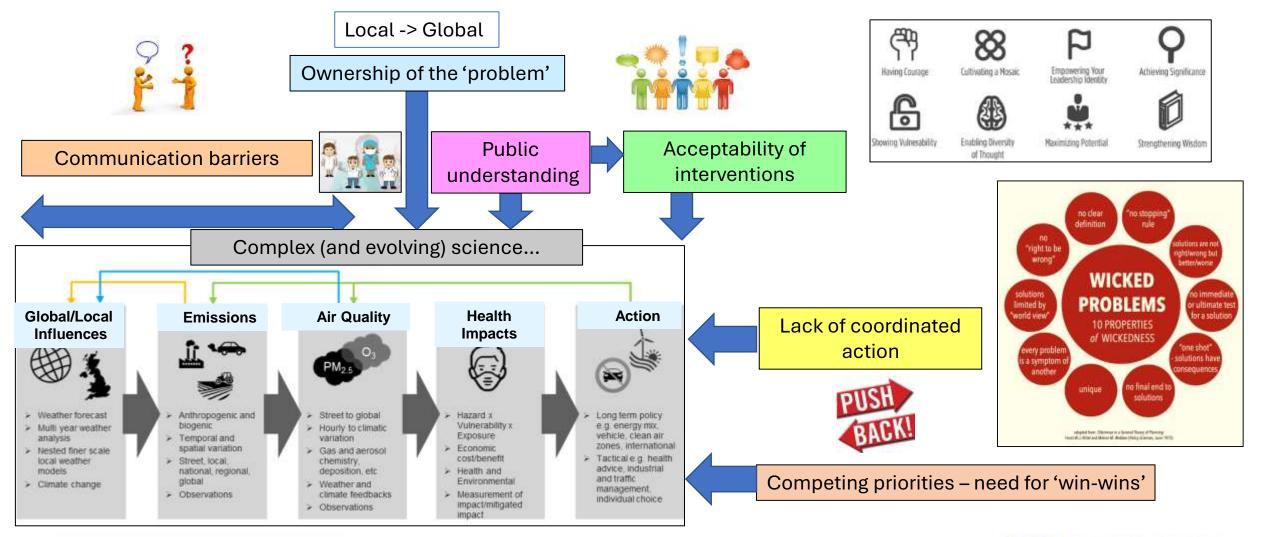
Paediatric Respiratory Consultant, Birmingham Children's Hospital

Dr Mubasshir Ajaz

Head of Health and Communities at West Midlands Combined Authority

Greener Together

Smoke control area


Please be aware that you are entering a local authority smoke control area. Restrictions apply to vessels.

For further information visit: www.sandwell.gov.uk/

Elizabeth Stephens Air Quality Team Manager

Why we need partnerships to address the air quality challenge

Community delivery and capacity building

Working in partnership for cleaner air in the West Midlands

Panel

Waseem Zaffar

Councillor Waseem Zaffar MBE, Chair - Birmingham Healthy Air Coalition

Catherine Kenyon

Head of Programmes, Clean Air, Global Action Plan

Kirsten de Vos

Campaigner and volunteer for Mums for Lungs

Greener Together

Breakout rooms: post-lunch

Air quality behaviour change *Explore*

Transport interventions for cleaner air *Think* Air quality policy and targets Inspire

Improving indoor air quality Smile

West Midlands Combined Authority

Lunch

12:30 - 13:30

West Midlands Combined Authority

Breakout room sessions

Air quality behaviour change

James Knoll-Pollard

Behaviour Change Lead, WSP

Ellis Garvey

Assistant PM & Trial Lead, WSP

AIR QUALITY BEHAVIOUR CHANGE TRIALS: LEARNINGS

Introduction

James Knoll-Pollard

Behavioural Design Lead, Communities and Mobility, WSP

Eilis Garvey

Principal Consultant, Communities and Mobility, WSP

Background

- In 2023, funding was awarded from Defra, to the WMCA to commission an Air Quality Behavioural Change Programme (August 2023 - March 2025).
- Aims to drive behavioural change within the local community, implementing interventions to reduce pollution and exposure to it.
- Involves the design, implementation and evaluation of 7 air quality behaviour change campaigns within each constituent authority, with fine particulate matter (PM2.5) being the pollutant of primary focus due to its ill health effects.

Objectives

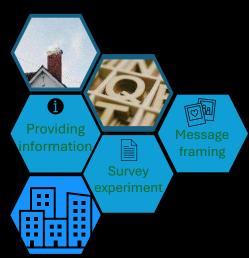
1

Identify what type of behavioural change campaigns have a scalable and demonstrable impact

2

Identify what interventions are likely to result in the largest impact to public health

Methodology


Each of the 7 trials was designed with input from the local authority. Each trial had a specified air quality focus, behaviour change mechanism, and target group.

Sandwell and Birmingham

Air Quality Focus

Behavioural mechanism

Target group

- A survey experiment to test the effect of framing information on the Smoke Control Area.
- A survey experiment to understand what kind of messaging is most effective at debunking common air quality myths.

Question:

Which message framing technique was most effective at changing AQ attitudes in Sandwell? Health or Compliance

Answer: Compliance messaging was more effective.

Compliance framing was most effective at changing people's attitudes.

People in the **compliance framing** were more likely to **perceive** the Smoke Control Area as **positive**.

Both **compliance and health framing** were effective at improving people's **knowledge**.

Wolverhampton

Air Quality Focus

Target group

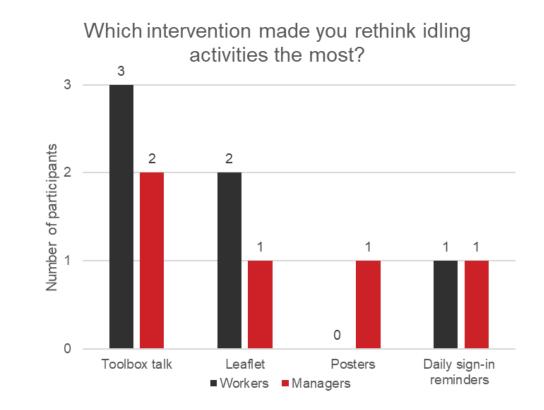
Behavioural mechanism

 Using an information campaign and vehicle telematics to reduce idling at a construction site

Question

Which engagement technique did participants say made them rethink idling activities the most?

Toolbox talks, anti-idling posters, information leaflets, or daily signin reminders?


WSP | West Midlands Air Quality Conference | 5 June 2025

Answer: Toolbox talks were the most effective.

A 20% reduction in idling was recorded during the trial period

Myth-first messaging was effective at debunking idling myths

The most effective intervention message for **management** was about **cost-savings**. The most effective intervention message for **workers** was about **health impacts**.

West West Cycle Hiro

Dudley

 Testing which behavioural mechanism is most effective at getting sports club attendees to reduce car use

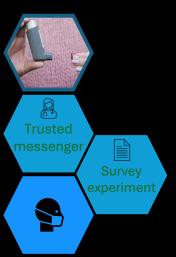
Question:

Which incentive was most effective at reducing car use in Dudley? Financial incentive, team competition or personal goal setting?

Answer: the team competition was most effective.

Social norming (working as a team) was the most effective mechanism at encouraging **behaviour change.**

Participants were motivated by not wanting to let down their team and by encouragement from team members.


Most participants stated they were likely/very likely to continue using active travel modes.

Solihull

Air Quality Focus

Target group

Behavioural mechanism

Using

pharmacists as a trusted messenger, people with respiratory conditions were provided with an information on the impacts of air quality when visiting local pharmacies.

Question

Out of 300 flyers shared with the public, how many people scanned the QR code for more information on air quality?

Answer: One.

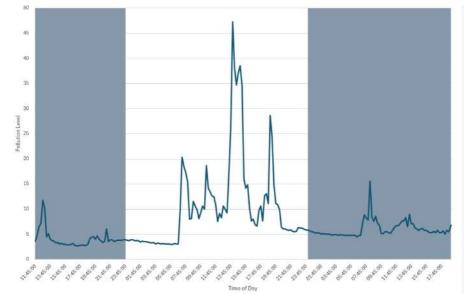
We added **Friction.** The feedback from the pharmacists was that while the information was interesting and well received, people were in a rush, didn't want to hang around, and generally didn't end up in a position to sit and read a flyer, then scan a QR code.

Walsall and Coventry

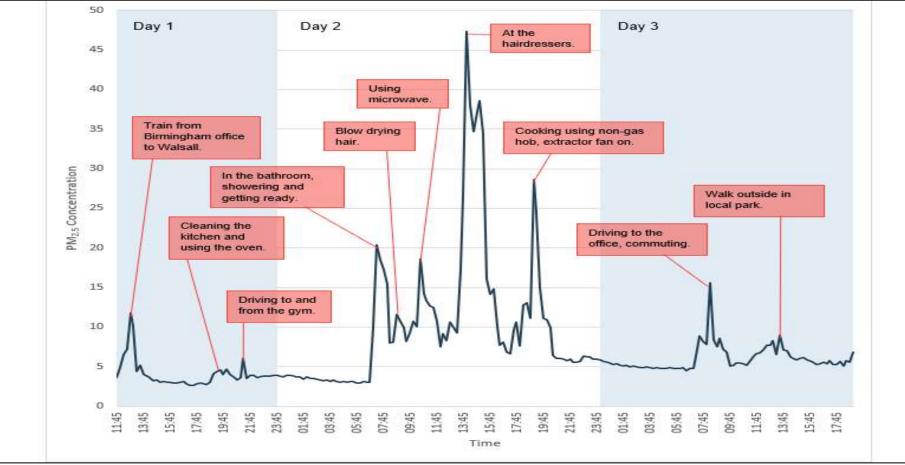
Air Quality Focus

Behavioural mechanism

Target group



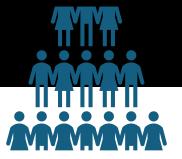
- Volunteers carried air quality monitors to measure their exposure to PM2.5 while carrying out normal daily activities, both inside and outside of the house.
- Indoor air quality monitors in households with a wood burning stove to monitor the impact on air quality when the stove was in use.


Question:

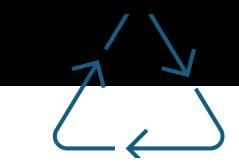
What activity might have caused this peak in PM2.5 exposure in Walsall?

WSP | West Midlands Air Quality Conference | 5 June 2025

Answer: visiting the hairdresser.



WSP | West Midlands Air Quality Conference | 5 June 2025


What worked?

 Shared ownership of trials by engaging with local authorities to direct the trials

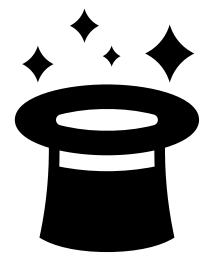
- Community engagement – we exceeded our engagement target
- Replicable trials that had a clear air quality and behaviour change focus

 Incorporating learnings throughout by staggering the delivery of trials and designing based on what we learned

What caused challenges?

- Relying on volunteers to support delivery
- Sharing information via QR codes

• Timescales


THE POLLUTION SOLUTION SHOWDOWN

Your turn to be a researcher!

• What is your challenge?

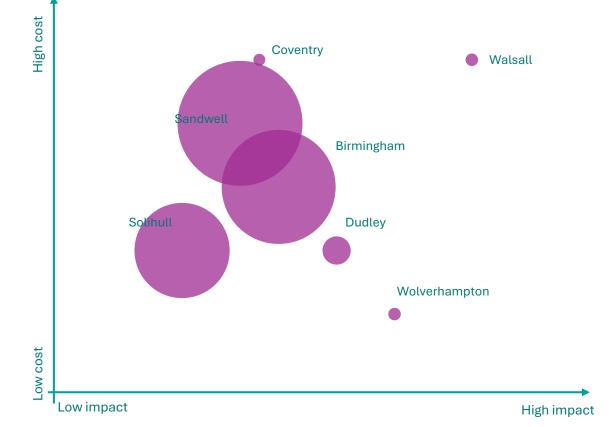
• What is your cohort?

Task 1

• What emissions/ behaviours could you address with your cohort?



Task 2


 Design an intervention to address this challenge, with your cohort and topic.

Task 3

Pre-mortem: Why will it work?

What is your intervention and where does it land on the chart?

WSP | West Midlands Air Quality Conference | 5 June 2025

Thank you!

James Knoll-Pollard

Behavioural Design Lead, Communities and Mobility, WSP

James.knoll-pollard@wsp.com

Eilis Garvey

Principal Consultant, Communities and Mobility, WSP

Eilis.garvey@wsp.com

WSP | West Midlands Air Quality Conference | 5 June 2025

Air quality behaviour change

Siobhan Sadlier

Engagement Executive, WMCA

Lauren Hoyle

Engagement Officer, WMCA

Engagement – One Conversation at a time

7 Data Visualisation workshops across region engaging 82 individuals.

7 Pop Up Exhibitions with general public in footfall hot spots engaging 200+ individuals

Community based pop up exhibitions in partnership with community based organisations engaging 50+ individuals (delivery ongoing)

Role of Art in Engagement

- Process of making art collectively
- Attention grabbing stimulus for conversations in public
- Strengthening relationships with community organisations and members in displaying their art work
- Sense of being part of a regional effort

Art Competition

- Only 2 entries.
- Feedback fostering competition rather than collaboration amongst artists.
- Featured artist in exhibition prominently.

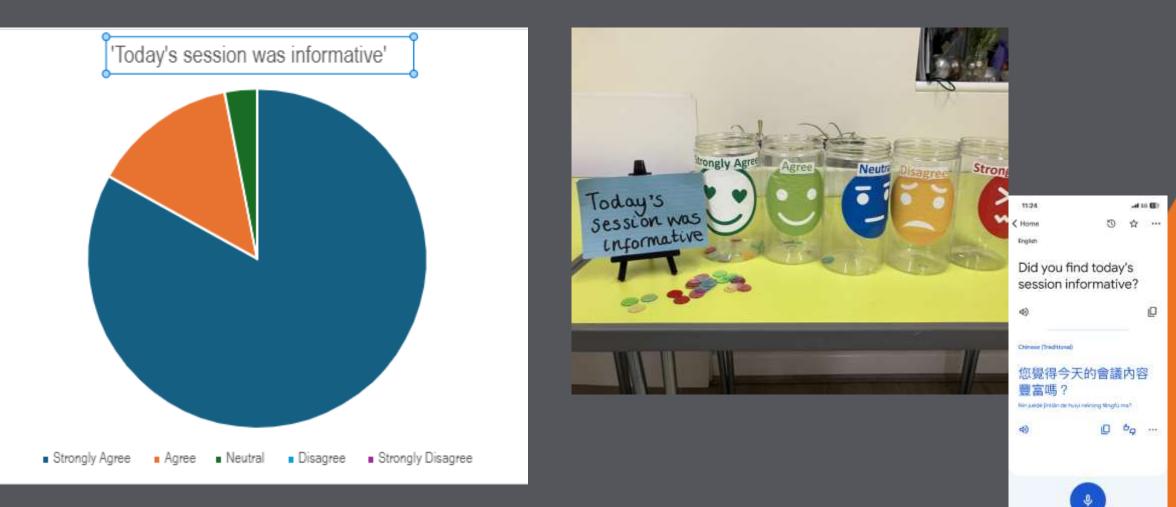
Community Researchers

Introduction to community research skills workshop

Co create questions

Vox pops – audio recordings and flip charts.

Next steps – co produce analysis and dissemination.



Engagement – Discovering Community's 'Touch Point' to Air Quality

- Small Sparks small grants for community groups and organisations to experiment.
 - Applications incoming
 - Opening up interpretations of air quality awareness and activity that brings people together
- Community Researchers local citizens keen to explore their interests around air quality.
 - Opening up conversations of how air quality is perceived, understood and acted upon.

Evidence of creative approach's efficacy

Key quotes from data visualisation workshops – focusing on process and outputs

"This is like school but a really cool school"

"I don't learn by school or YouTube – I learn by doing"

"When you're gluing the lungs down, it makes you think, it really sinks in"

"Making the ink is a great way to learn about this"

S

CL)

÷

C

Key Principles of Practice (1/2)

1. Two way conversations - not an announcement understanding how air quality is interpreted, what is prioritised will help future messaging.

Key Principles of Practice (2/2)

 Art – process and outcomes. the workshops didn't just produce stimulating assets for exhibitions, they helped people learn about issues.

'Living' questions

Where am I discovering community perceptions and priorities around air quality?

- Evaluation questions
- Community Research
- Data visualisation workshop pre-engagement.

How am I discovering community based strengths in effort to improve air quality?

• Small sparks fund.

Air quality behaviour change & engagement

How can we mainstream and scale up behavior change and engagement measures to support improvements to air quality?

- What are the best practices for engaging communities most impacted by air pollution?

Air quality policy and targets

Joe Acton

Impact Fellow, University of Birmingham

Jackie Homan

Head of Environment, WMCA

Air Quality Stretch Targets for the West Midlands June 2025

WM-AIR CLEAN AIR SCIENCE FOR THE WEST MIDLANDS

Dr Joe Acton, Prof William (Bill) Bloss & the WM-Air team

WM-AIR@CONTACTS.BHAM.AC.UK

@WMAIR_UOB

WM-AIR.ORG.UK

Stretch Targets for the West Midlands ?

Motivation

- Protection of health mortality, illness, healthcare cost, productivity ... childhood asthma
- Evidence for harm to health at levels below current "threshold" targets
- Reduce environmental inequality between different communities
- Scope for local and regional action (in some respects), delivering local and regional benefits
- UK / England targets are, arguably, not as stretching as they might be: London factor

Stretch Targets for the West Midlands ?

Motivation

- Protection of health mortality, illness, healthcare cost, productivity ... childhood asthma
- Evidence for harm to health at levels below current "threshold" targets
- Reduce environmental inequality between different communities
- Scope for local and regional action (in some respects), delivering local and regional benefits
- UK / England targets are, arguably, not as stretching as they might be: London factor

Approach

- Review of air quality "target" approaches in the UK and elsewhere
- Assessment of current air quality levels vs present-day and future targets
- Exploration of future air quality anticipated (e.g. under "business as usual" activity) and possible policies / scenarios
- Identification of options for stretch targets for the West Midlands
- Estimate of benefits health, and environmental inequality / equity

Air Quality "Targets"

- Air quality targets, limits and objectives have been set by supranational, national, regional and local governments and organisations
- These targets typically focus on particulates (PM₁₀ and PM_{2.5}) and nitrogen oxides (NO₂ and NO_x)
- In addition to these species UK limits are in place for: ozone, sulphur dioxide, polycyclic aromatic hydrocarbons (PAHs), benzene, 1,3-butadiene, carbon monoxide and lead
- Targets can be focused on:
 - Emission controls a maximum rate of pollutant emission from a specific source (e.g. an industrial site)
 - Concentration limits a set concentration that should not be exceeded (often an annual average)
 - Exposure reduction reducing the concentration to which a percentage of the population are exposed

Which Pollutants?

- Nitrogen dioxide (NO₂)
 - Current exceedances of national standards within the region
 - Small health impact relative to particulates
 - Concentration mainly driven by local road traffic
- Fine particles (PM_{2.5})
 - No exceedances of current national standards within the region (although much of the region is above the 10 µg m⁻³ to be achieved by 2040 set by the Environment Act)
 - Large impact on health
 - Concentration driven by a broad range of local and regional sources

Ozone (O₃)

- No exceedances of current targets, but levels expected to rise (as NO emissions fall: less NO + O3 titration)
- Potential future health impact
- Long-lived: Concentration driven by regional and wider emissions, transport
- Ultrafine Particles (UFP)
 - Health impact (as per WHO) but no clear guidelines or standards; no established measurement capability (beyond BAQS)

WHO guidelines, 2021

- WHO issues health based air quality guidelines in the form of limit values
- The published guidelines are the level below which there is less certainty (no evidence) for an impact on health
- Interim target levels are provided alongside guideline levels

	Nitrogen dioxide, NO ₂	PM _{2.5}
2021 WHO guidelines	40/30/20 10	35/25/15/10 5

WHO global air quality guidelines

Particulate matter (PM₂₅ and PM₁₀), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide

UK (England) Policy

Concentration Limits

- DEFRA set binding annual mean concentration targets (in force now) for NO₂ (40 μg m⁻³) and PM_{2.5} (20 μg m⁻³)
- The Environment Act, 2021 updated the **PM_{2.5}** target to **10 μg m⁻³** to be achieved by **2040**
- The Environmental Improvement Plan 2023 sets an interim $PM_{2.5}$ target of 12 µg m⁻³ to be achieved by 2028

(Limits also in place for ozone, sulphur dioxide, polycyclic aromatic hydrocarbons (PAHs), benzene, 1,3-butadiene, carbon monoxide and lead)

Exposure reduction

- UK Clean Air Strategy (2019) aimed to achieve a 50% reduction in the number of people living in locations above the 2005 WHO PM_{2.5} guideline level (10 µg m⁻³) by 2025
- The Environment Act, 2021 set a legally binding target for a 35% reduction in population PM_{2.5} exposure by 2040 (compared to a base year of 2018)
- The Environmental Improvement Plan 2023 sets an interim PM_{2.5} exposure reduction target of 22% to be achieved by 2028

European Union (EU)

Concentration limits

- The EU sets air quality targets for member states and member states are required to monitor air quality and report exceedances to the European Environment Agency (EEA)
- A new EU Directive 2024-2881 (October 2024) set more ambitious binding targets for NO₂ (20 μg m⁻³ annual mean) and PM_{2.5} (10 μg m⁻³ annual mean) to be achieved by 2030, bringing them in line with WHO interim target levels

Regional and local authorities

- In places regional and local authorities have enacted more ambitious air quality targets than required by national legislation, either through **lower concentration targets** or **reducing the timeframe** for delivery
- The GLA have set a target of reaching an annual average PM_{2.5} of 10 μg m⁻³ by 2030, 10 years ahead of the national target

Regional and local authorities

- In places regional and local authorities have enacted more ambitious air quality targets than required by national legislation, either through lower concentration targets or reducing the timeframe for delivery
- The GLA have set a target of reaching an annual average PM_{2.5} of 10 μg m⁻³ by 2030, 10 years ahead of the national target

Oxford: In January 2021 Oxford City Council set a new **30 µg m⁻³ target for NO₂** annual mean concentration to be achieved by 2025 in their AQAP

- A Zero Emissions Zone will be introduced in two phases to support local air quality objectives
- The first, trial, phase was introduced in 2022. All petrol and diesel vehicles, including hybrids, incur a daily charge when driven into the trial area between 7am and 7pm

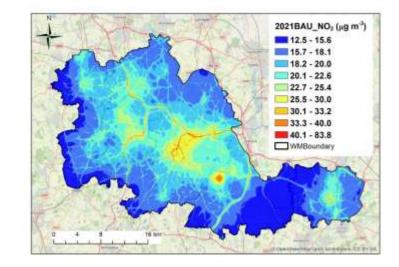
Regional and local authorities

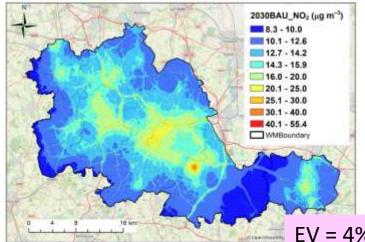
- In places regional and local authorities have enacted more ambitious air quality targets than required by national legislation, either through lower concentration targets or reducing the timeframe for delivery
- The GLA have set a target of reaching an annual average PM_{2.5} of 10 μg m⁻³ by 2030, 10 years ahead of the national target

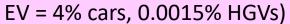
Oxford: In January 2021 Oxford City Council set a new **30** μ g m⁻³ target for NO₂ annual mean concentration to be achieved by 2025 in their AQAP

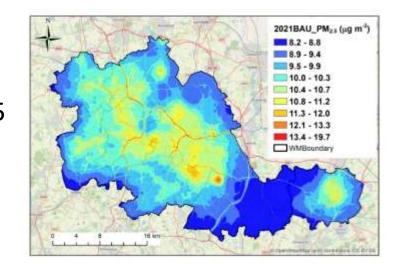
- A Zero Emissions Zone will be introduced in two phases to support local air quality objectives
- The first, trial, phase was introduced in 2022. All petrol and diesel vehicles, including hybrids, incur a daily charge when driven into the trial area between 7am and 7pm

Richmond: London Borough of Richmond upon Thames have a objective to reduce annual average **NO**₂ **concentrations to below 20 μg m**⁻³ at all measurement sites in the borough by 2029

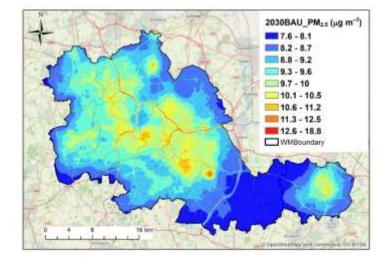

- This is a draft Action Plan is currently undergoing an consultation
- This is in addition to the London wide target to reduce PM_{2.5} annual averages in London to below 10 μg m^{-3.}
- Action plan proposes action on road traffic, wood burning and also commercial kitchens and restaurants




Summary of annual average concentration targets/limits


Organisation	NO ₂ (μg m ⁻³)	PM _{2.5} (μg m ⁻³)
WHO	10	5
EU	20 (by 2030)	10 (by 2030)
UK	40	20 (10 by 2040)
Scotland	40	10
Wales/Northern Ireland	40	25
Greater London Authority	NA	10
London Borough of Camden	10 (by 2034)	5 (by 2034)
Richmond Borough Council	20 (by 2029)	10 (by 2029)
Oxford City Council	30 (by 2025)	NA
Greater Cambridge	20 (by 2029)	10 (by 2029)

Present Day vs Business-As-Usual (BAU) 2030



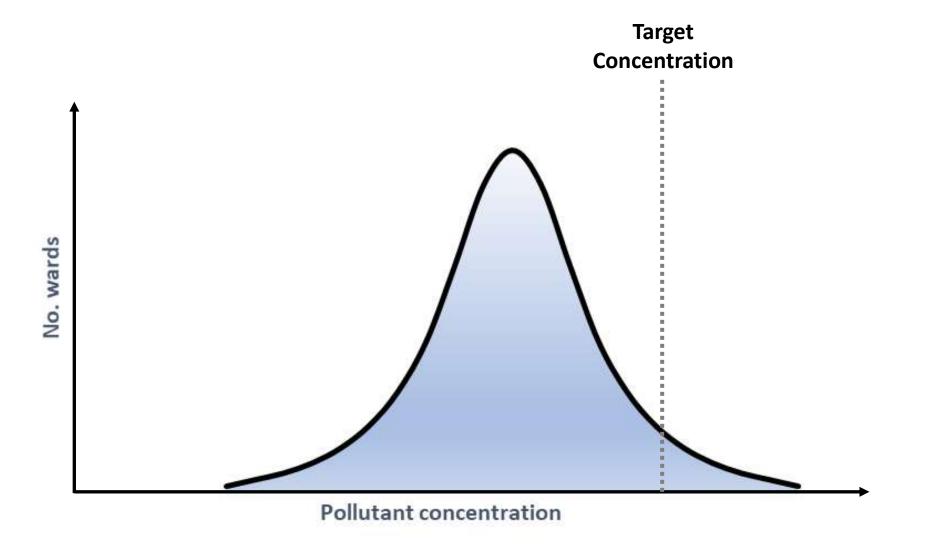
Now (2021)

2030

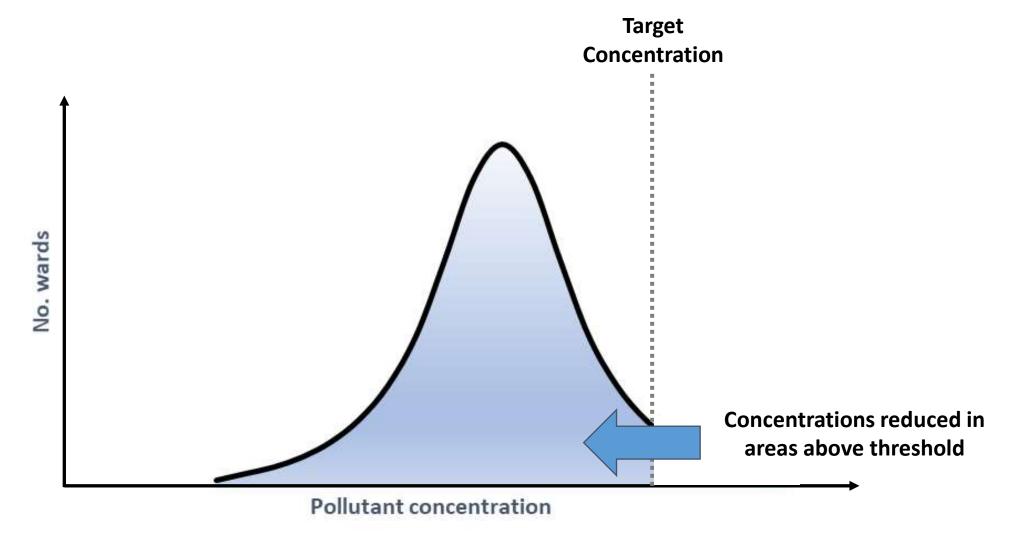
PM_{2.5}

NO_2

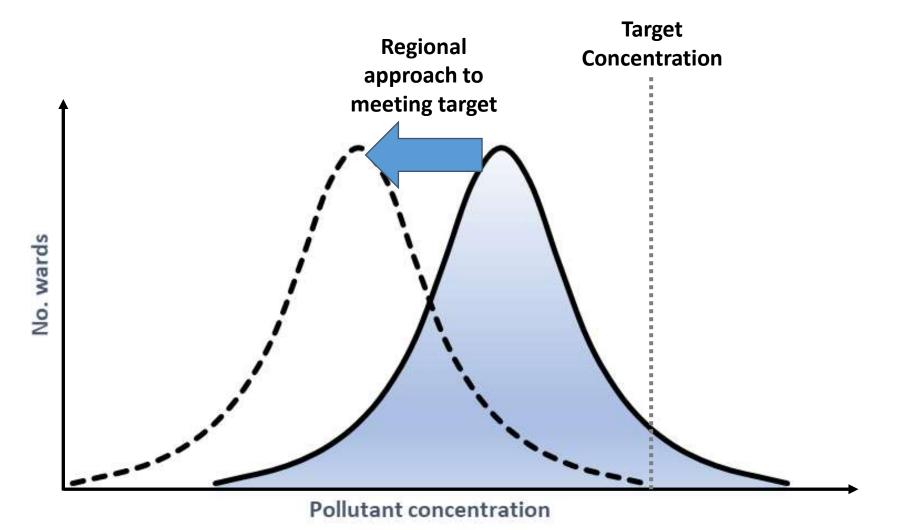
Towards a regional target: NO₂


Current targets

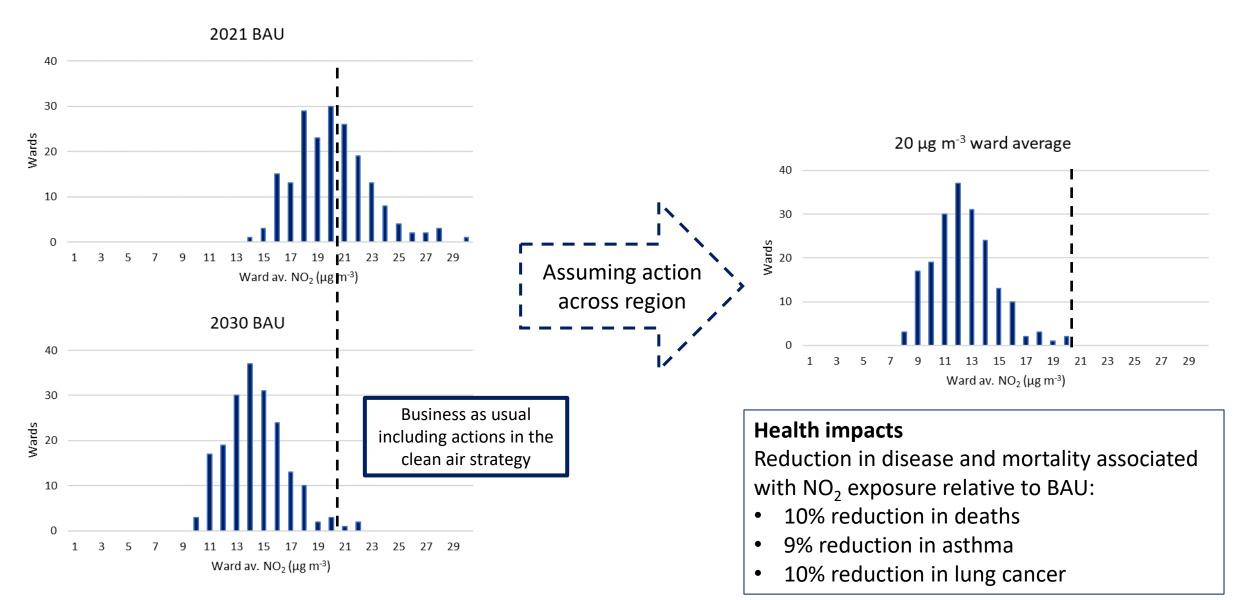
Target/Objective/Guideline	NO ₂ (μg m ⁻³ annual mean)
Current binding DEFRA air quality limit (England)	40
WHO 2021 air quality guideline	10
WHO 2021 air quality interim targets	40/30/20


Towards a regional target: NO₂

- Concentration limits:
 - WHO interim targets are 40, 30 and 20 $\mu g~m^{\text{-3}}$
 - 30, 20 and 10 μ g m⁻³ adopted by different local/regional authorities in England (non-binding)
 - Modelling suggests 20 μg m $^{-3}$ annual average background concentration may be attainable by 2030
- Disparity reduction:
 - Disparity between wards could be addressed through a target e.g. an annual 5% reduction in the difference in ward average concentration between the least and most polluted wards
- Timescale:
 - Where LA's have set regional air quality objectives the time scale has been driven by local priorities (generally in the range 2025-3035)
 - EU are working towards a date of 2030
 - Environment Act targets (PM_{2.5}) 2040 (2028 interim)


Routes to achieving target concentrations

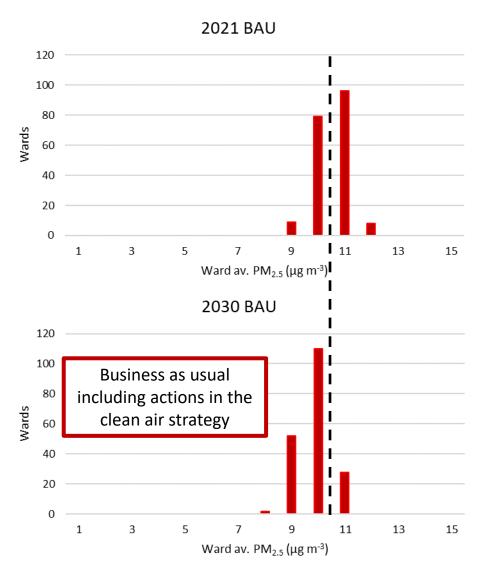

Routes to achieving target concentrations: **1 target only areas above threshold**


Routes to achieving target concentrations: 2 concentration reduced across the region

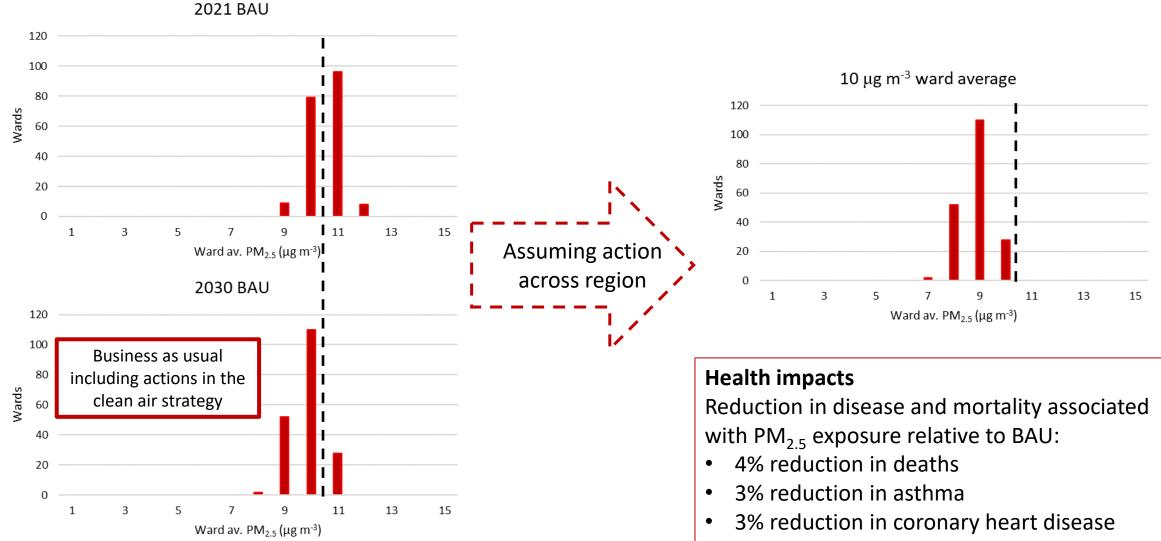
20 µg m⁻³ ward average NO₂

20 µg m⁻³ ward average NO₂

Towards a regional target: $PM_{2.5}$


Current targets

Target/Objective/Guideline	PM _{2.5} (μg m ⁻³ annual mean)	
Current binding DEFRA air quality limit (England)	20	
WHO 2021 air quality guideline	5	
WHO 2021 air quality interim targets	35/25/15/10	
Environment Act, to be achieved by 2040 (2028)	10(12)	
35% reduction in exposure by 2040 relative to 2018		


Towards a regional target: $PM_{2.5}$

- Concentration limits:
 - 20, 10 and 5 μ g m⁻³ adopted by different local/regional authorities in England (non-binding)
 - 5 μg m⁻³ WHO guideline will not be met but modelling suggested that 10 μg m⁻³ England target (and WHO interim target)) likely attainable well before 2040 (current DEFRA target date)
 - Modelling suggests a stretch target of an annual average concentration of 10 μg m $^{-3}$ could be achieved by 2030
- Disparity reduction:
 - Disparity between wards could be addressed through a target e.g. an annual 5% reduction in the difference in ward average concentration between the least and most polluted wards
- Timescale:
 - Where LA's have set regional air quality objectives the time scale has been driven by local priorities (generally in the range 2029-3035)
 - EU are working towards a date of 2030
 - Environment Act targets 2040 (2028 interim)

$\mu g~m^{\text{--}3}$ ward average $PM_{_{2.5}}$

10 μ g m⁻³ ward average PM_{2.5}

• 4% reduction in lung cancer and strokes

Towards regional Air Quality targets for health

NO₂

<u>Stretch Target</u>: background concentration < 20 µg m⁻³ by 2030 <u>Progress Measure</u>: 5% annual reduction in the difference between the most and least polluted wards

PM_{2.5}

<u>Stretch Target</u>: concentration < 10 μ g m⁻³ by 2030 <u>Progress Measure</u>: 5% annual reduction in the difference between the most and least polluted wards

• Progress evaluated against DEFRA modelling

Thank you

Air quality policy and targets

How could regional stretch targets accelerate air quality action across the West Midlands?

- What are your views on adopting the stretch targets?
- What are the implications of the stretch targets for your work?
- What support would be required to communicate and deliver the stretch targets?

Transport interventions for cleaner air

Jake Thrush

Associate Policy Advisor, Transport for West Midlands

Transport for West Midlands

Transport Strategy to Improve West Midlands Air Quality, and the role of an integrated public transport system Jake Thrush WMCA Air Quality Conference 5 June 2025

Transport Strategy to improve air quality

Overall air quality strategy in the West Midlands is aimed at reducing NO2 levels and fine particulate levels (PM2.5s).

It is based on:

- -public transport, walking and cycling capital scheme improvements
- -behaviour change awareness and promotion campaigns, especially with schools
- -Birmingham's Clean Air Zone
- -Improved monitoring
- -Bus vehicle fleet improvements
- -Electric charging points roll out
- -Improved signalised junctions with dynamic traffic management
- -Land use planning policies and development control
- -Smoke Control Areas and campaigns to reduce domestic burning

The transport themes are part of the overall Local Transport Plan sustainable urban transport strategy for the West Midlands

West Midlands Local Transport Plan 5

West Midlands Local Transport Plan 5 has five overarching aims ("motives for change"):

- -Sustaining economic success
- -Creating a fairer society
- -Supporting local communities and places
- -Becoming more active
- -Tackling the climate emergency

We need to create an "anywhere to anywhere", integrated public transport system to help us deliver these five, overarching aims, which include improving air quality. We also need improved conditions for walking and cycling and demand management measures to help reduce some car use

Walking and Cycling Improvements

Walking and cycling excel for trips:

- 0 1 km walking
- 1 3 km cycling

Plus key role for cycling for 3 – 8 km (as well as bus for these trips)

Local residential area improvements and strategic cycle network (segregated cycle tracks)

Demand Management

Need to reduce car vehicle kilometres whilst improving ability of people to reach desired destinations

Politically difficult to implement demand management, but can be done, eg roadspace allocation for bus priority, parking policies

Birmingham's Clean Air Zone has been successfully delivered by Birmingham City Council

Public transport improvements

TfWM seeking to create an integrated public transport system of three joined up network tiers:

-Regional Rail and Metro Network

-Core Network (high frequency, main bus network, with higher capacity tramway or Bus Rapid Transit lines for a limited number of high volume/major growth corridors)

-Secondary Bus Network (lower frequency, network coverage bus services)

All underpinned by integrated ticketing, branding, information, promotion and high quality interchanges: small/medium on-street and larger strategic centre interchanges

Bus Franchising will support, alongside work with new rail industry

structures

Regional Rail and Metro Network

All Ten Strategic Centres Served: the "structural, backbone network"

(Birmingham, Brierley Hill, Coventry, Dudley, Solihull, Sutton Coldfield, UKCentral Hub (Airport/NEC), Walsall, West Bromwich, Wolverhampton)

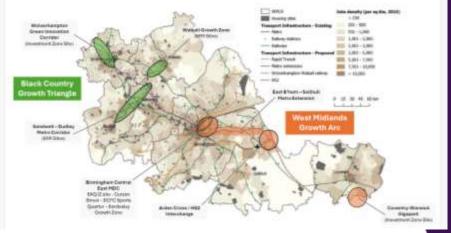
Core Network

Town and main district centres served by the Core Turn and Go Frequency Bus Network, includes some cross-city routes. Main urban flows served. Other key destinations served: hospitals, university and further education college campuses

Plus a limited number of priority rapid transit corridors:

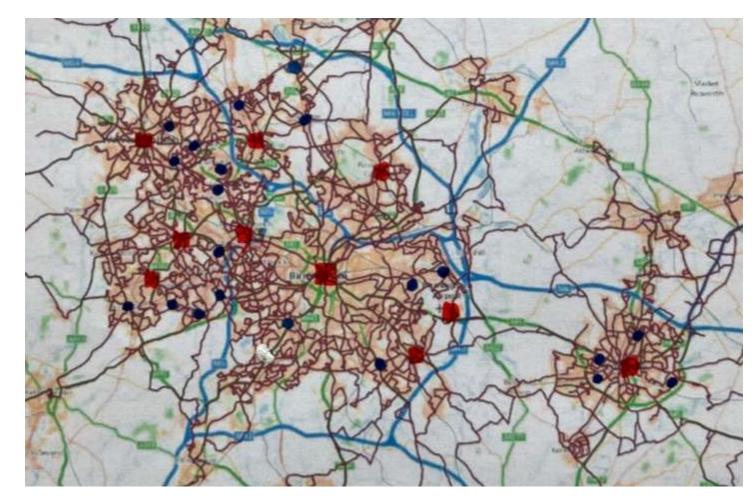

Rapid Transit Priority Corridors

Eight rapid transit priority corridors: high volume/major development corridors (either Metro tramway, Sprint Bus Rapid Transit or, potentially, Very Light Rail)

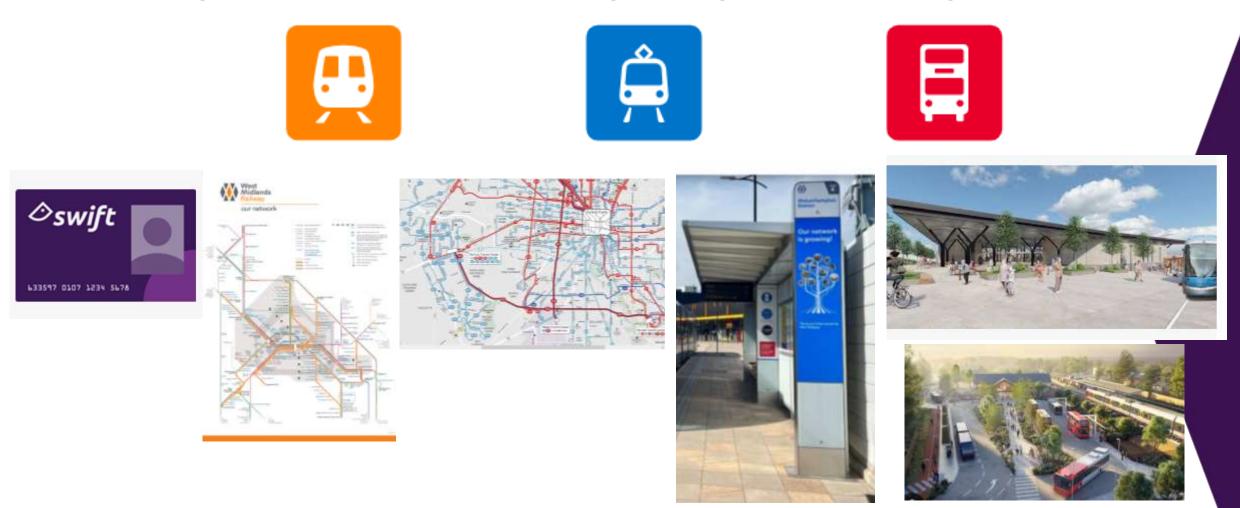


Sprint

Secondary Bus Network


Network coverage, lower frequency local bus network. Includes a role for demand responsive transport

Local



Three Network Tiers of an Integrated Public Transport System

All underpinned by integrated ticketing, branding, information, promotion and high quality interchanges: small/medium on-street and larger strategic centre interchanges

West Midlands Air Quality Successes

In the four years between 2018 and 2022, there has been a two thirds reduction in the number of monitoring sites in the West Midlands with exceedance levels of annual average NO2 (greater than 40 μ g/m3): from 77 sites down to 26. There will have been further reductions since 2022

Whilst monitoring is more limited, there has also been a reduction in the small number of monitoring sites with exceedance annual average levels for fine particulates: PM2.5. This is against the 2040 UK target for fine particulates (10 μ g/m3)

Key measures:

Improved environmental performance of the fleet of 2000 buses (Euro VI and electric)

ULEV charging points to support private car, taxi and van transition to electric vehicles

Localised traffic signal junction improvements

Birmingham's Clean Air Zone

Localised cycling and walking improvements and use

Major programme of public transport improvements starting to come on-stream

University of Birmingham's WM-Air 6 Year Project has fostered greater co-operation of local authorities and WMCA/TfWM

Transport interventions for cleaner air

Rachel Johnson

Senior Behaviour Change Officer, Transport for West Midlands

Demand Responsive Transport in the West Midlands

5th June 2025

West Midlands on Demand

Impact on use of sustainable modes

	Net % change (% more-% less)	Net % change (% more - % less)
Passenger	-8%	
Taxi	-7%	Taxi
Bicycle	-5%	Passenger
Driver	-3%	Bicycle
Train	+3%	Driver
Walk	+6%	Train Walk
Bus	+2%	Bus

Net % change % more - % less)	Previous WMoD	Previous Ring and Ride
Гахі	-19%	+1%
Passenger	-17%	-2%
Bicycle	-9%	-1%
Driver	-8%	+1%
Frain	+7%	+1%
Nalk	+12%	+1%
Bus	+7%	-1%

Challenges

Costs

•••

Managing competing needs

increasing utilisation

Extending the reach of WMoD

Physical Capability (involving a person's physical and musculoskeletal functioning): As a service that incorporates the ring and ride customers, it is an important factor in overcoming physical capability barriers.

Psychological Capability (a person's mental functions, e.g., understanding, memory and knowledge): Our research has shown that psychological Capability is a key aspect of the potential for uptake in the DRT service. It has revealed that we need to consider not just knowledge of the service but also their understanding of how it works and confidence that the service can meet their needs.

Reflective motivation (conscious through process, e.g., plans, evaluations): People expressed that trialling or testing the service might be helpful; they were keen to understand the process of booking and using the service and its practicalities.

Social opportunity (people and organisations, e.g., social norms and culture): Understanding who the service is for and believing that people like them can use the service are important elements to encourage more users. Examples of positive information from current users proved to be a popular way to communicate the service.

How can we enable a greater adoption of demand responsive transport services?

Researching user behaviour and attitudes Influencing Transport Lab January 2024

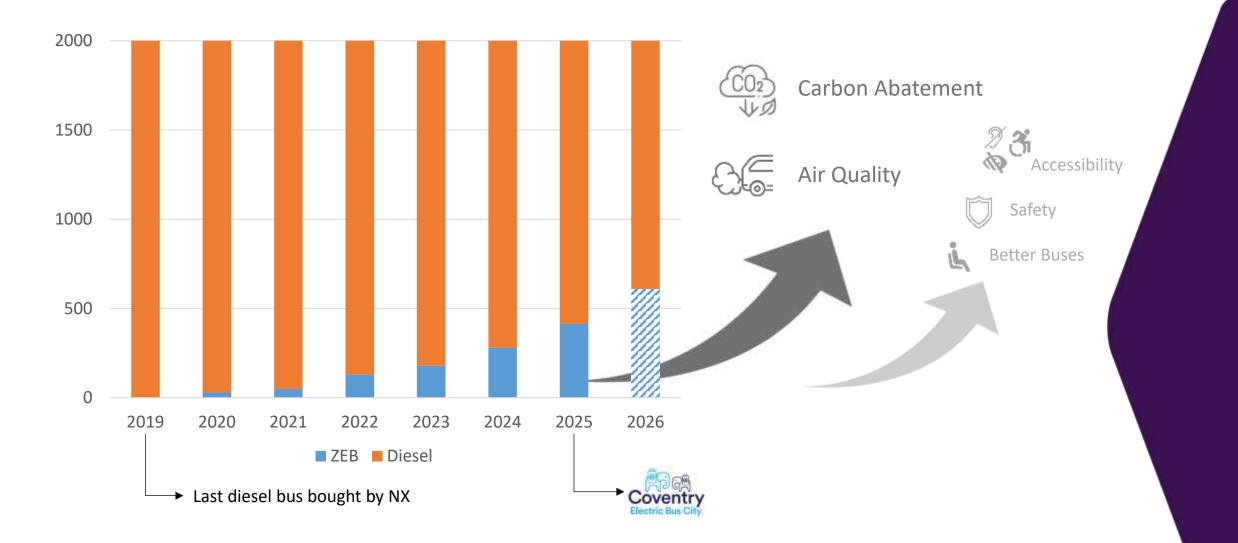
Transport interventions for cleaner air

Eliot Wilde

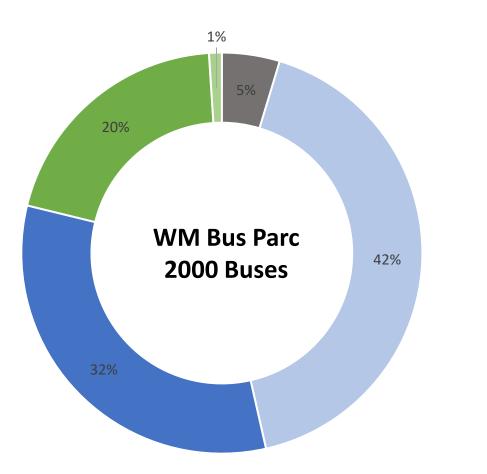
Zero emission bus programme manager, Transport for West Midlands

Greasing the wheels of ZE buses in the West Midlands

Eliot Wilde – Bus Fleet Programme Manager



Watt's Occurring?



Powering Up

Retrofit Regret?

■ < Euro VI

Euro VI

EV

FCEV

SCR Retrofit

Hydro-gone?

Millions spent on hydrogen buses left stuck in depots due to lack of fuel

Liverpool and Aberdeen are amongst the cities that have seen dozens of vehicles off the road since last summer due to fueing problems and high maintenance costs

Doarns of hydrogen bases have been left off the road for months on end (Photo: Getty)

Lucie Heath Emdromment Correspondent

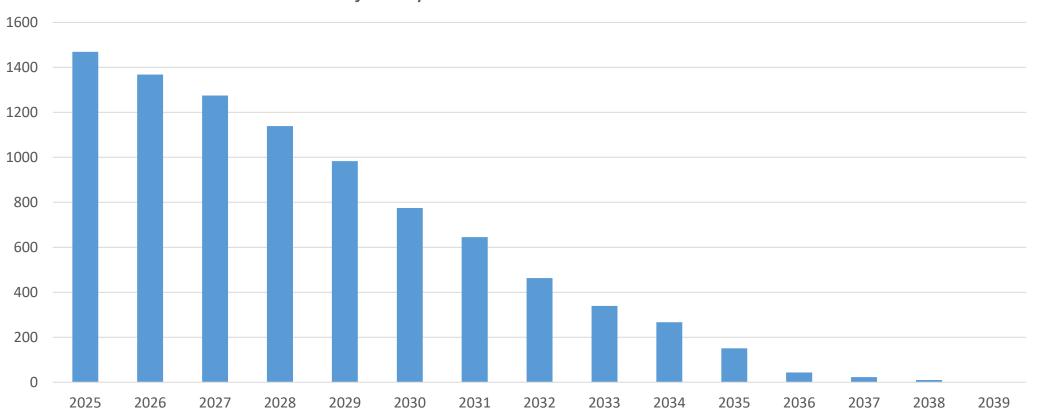
May 18, 2025 6:00 am (Updated 6:01 am)

<Share [] Save

Councils have spent millions on hydrogen bases so plagued with faults that many vehicles have been left trapped in depots for months at a time.

Liverpool, Birmingham and Aberdeen Councils are among those that have faced challenges with their hydrogen bus fleets, including high maintenance costs and a lack of fuel supply.

At least 139 hydrogen buses have been purchased by local authorities for around £500,000 each, as part of trials of the new technology in recent years.

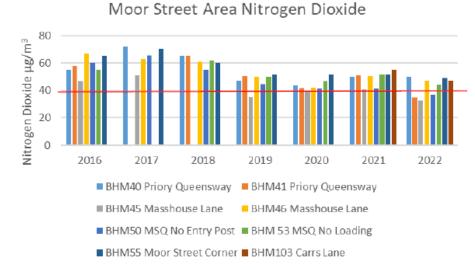


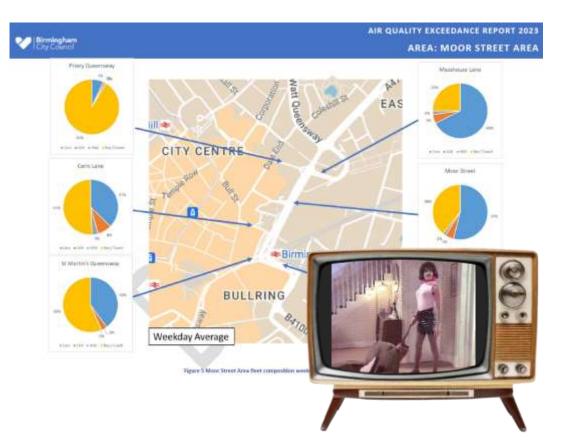
Watt's Next?

Hero to zero (at tailpipe)

"Current" Trajectory of Decline in Diesel Buses in WM Fleet

Cleaning up the Queensway




Figure 5 Moor Street Area fleet composition weekday average (34 hours).

Cleaning up the Queensway

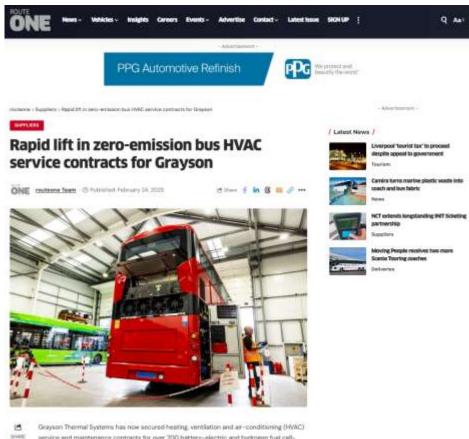
Moor Street Area Nitrogen Dioxide

Getting into the particulates

Watt Can Go Wrong?

Electrical Resistance?

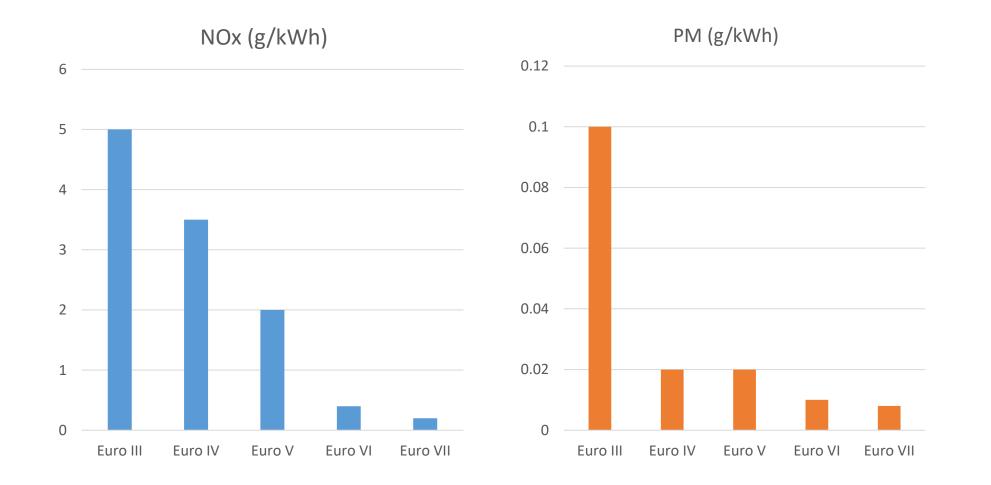
Ohm Grown?


Bus manufacturer Alexander Dennis warns of 160 jobs at risk

The company's biogest UK plant is based in Larbert

12 September 2034

Falkirk-based bus manufacturer Alexander Dennis said 160 Scottish jobs are at risk as the result of an "uneven playing field" in the sector.


- service and maintenance contracts for over 700 battery-electric and hydrogen fuel cell-
- electric buses in the UK.

Watt Else?

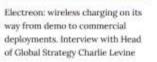
Unplugged?

Repower to the people?

Q

Home Top Stories Electric Bus Fuel Cell Infrastructure Components ITS Ticketing / MaaS Sustainable Bus Tour All categories -

Home * First Bus has placed an order for 32 repowered buses with Wrightbus' NewPower


First Bus has placed an order for 32 repowered buses with Wrightbus' NewPower

Highlights

First Bus becomes first UK Bus operator to place order with NewPower, a new enterprise owned by bus manufacturer Wrightbus that coverts diesel buses into zero emission vehicles. An initial order of 32 buses has been placed that will serve four regions. The new company has the goal of converting more than 1,000 diesel buses [...]

29 July 2024 Dy Ethnylei Staff

G-31 May 2025 O Tap Strees

KIEPE has a solution to charge ebuses with power supply from overhead public transport lines

(§ 12 May 2023 () intermediate

The F Word

Franchising is not a silver bullet for delivering a zero-emission bus fleet.....but it gives us more levers

Transport interventions for cleaner air

How can innovative transport solutions contribute to improving air quality?

- How do we scale up and embed these approaches to be a part of the broader transport system?
- How do we sustainably transition to electrification of the transport system?
- How do we ensure air quality related transport improvements also promote economic regeneration?

Improving indoor air quality

Zongbo Shi Professor of Atmospheric Biogeochemistry, University of Birmingham

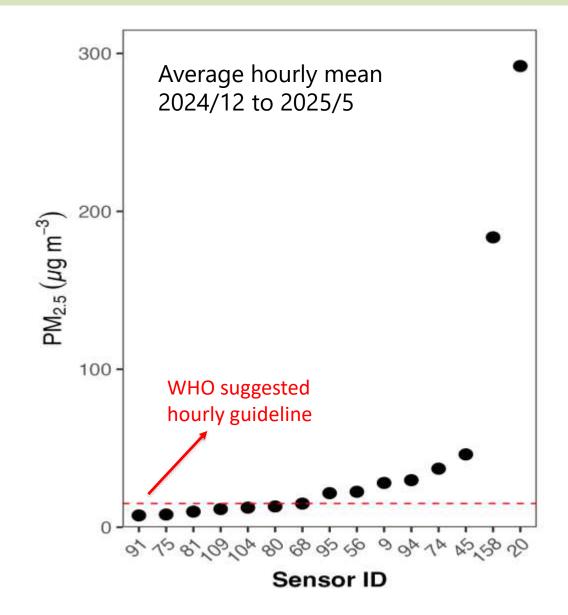
Alex Gordon Energy Projects Officer, WMCA

Indoor Air Quality in a changing world

West Midlands Combined Authority

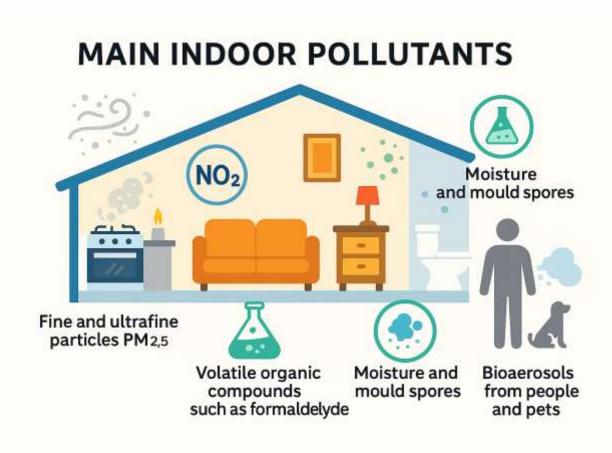
Professor Zongbo Shi University of Birmingham Alex Gordon

West Midlands Combined Authority


WM-NETZERO@CONTACTS.BHAM.AC.UK

@WMNETZER0

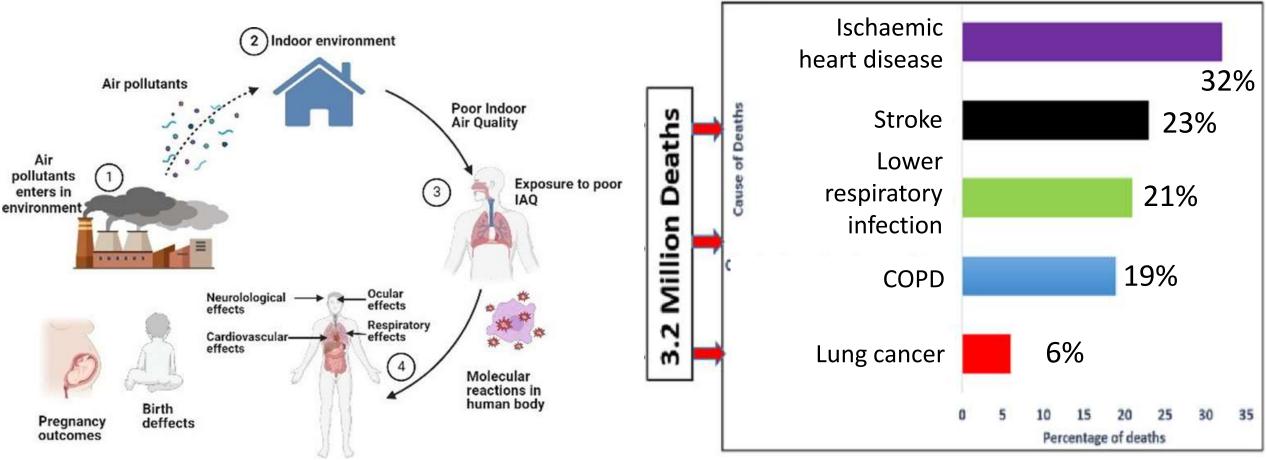
"Our homes provide the living environment that dictates our future health." Sir Michael Marmot


Why indoor air quality matters

- People spend about 90% of their time indoors
- WHO 2021 annual guideline for $PM_{2.5}$ is 5 µg/m³, and hourly guideline is 15 µg/m³
- Many homes in the UK exceeded the WHO suggested hourly average PM_{2.5} guidelines.

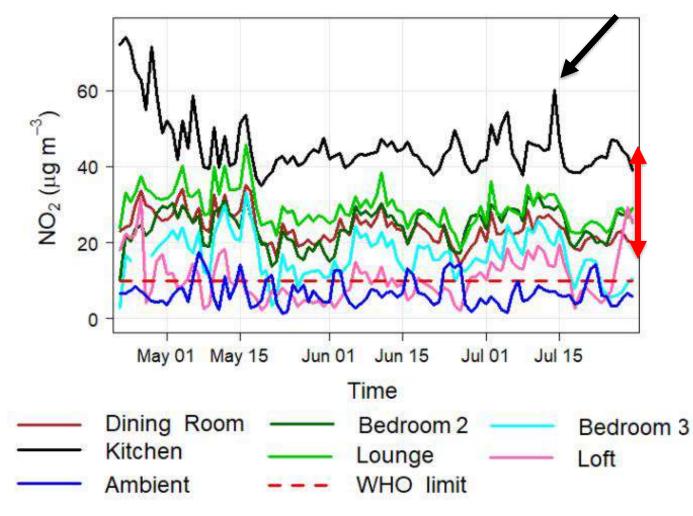
Main indoor air pollutants

- Fine particles (such as PM_{2.5})
- Nitrogen dioxide (NO₂)
- Volatile organic compounds such as formaldehyde
- Moisture and mold
- Bioaerosols from people and pets


Indoor air pollutant sources

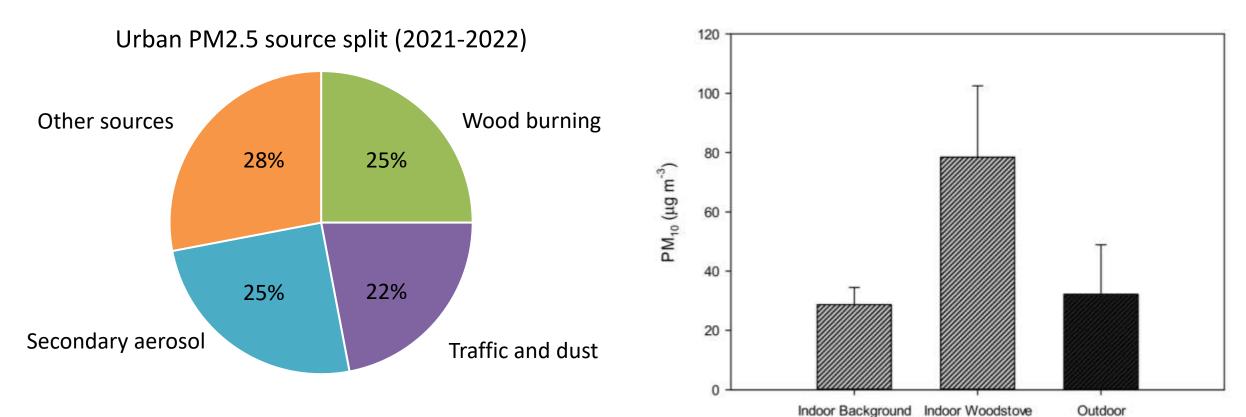
Combustion: Outdoor pollution that infiltrates through windows smoking, gas and doors hobs, candles, wood burners **Off-gassing** from furniture, paint, and building products **Occupants** and pets breathing and shedding

particles


Health impacts

3.2 million people die prematurely each year caused by the incomplete combustion of solid fuels and kerosene used for cooking (WHO, 2021).

Kumar et al., 2023, STOTEN


Gas cooking – an important pollutant source

Daily average NO_2 concentrations over a 3-month period in multiple rooms in an urban home (Singh et al., 2024).

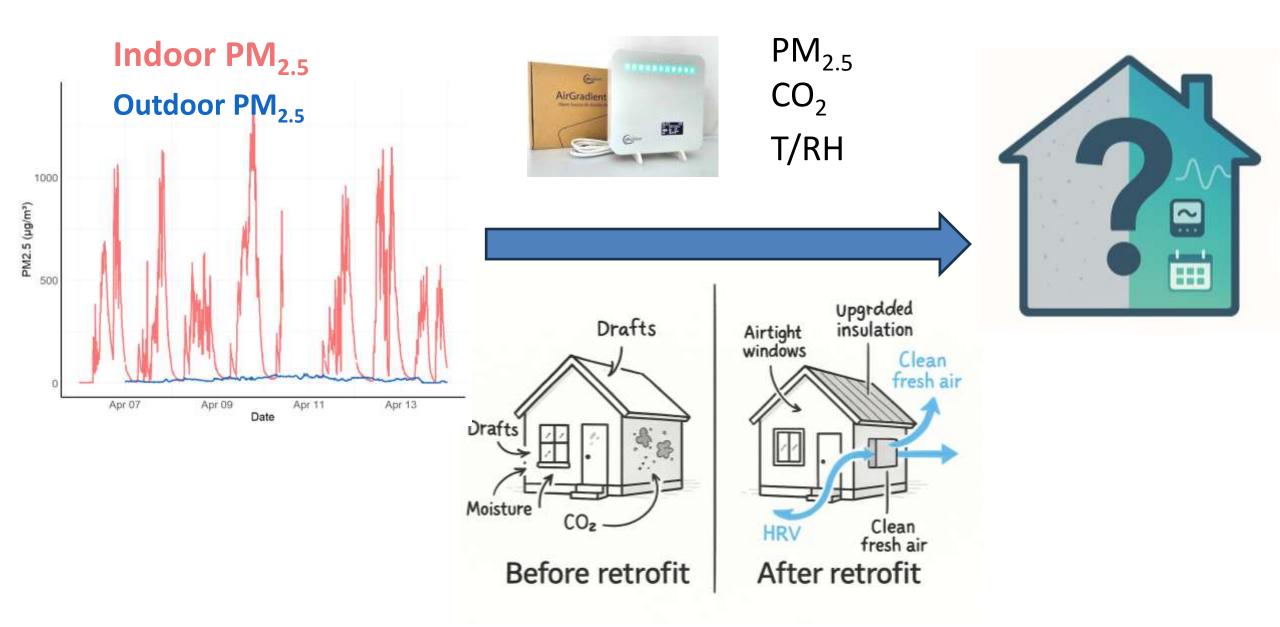
- Gas hobs are the main indoor source of NO₂ and also emit CO, methane and PM_{2.5}.
- **80 %** of UK homes lack adequate kitchen extraction.
- Switch to induction or electric hobs
- Interim measures are powerful extraction fans & open windows.

Wood burning and PM_{2.5}

- Wood-smoke concentrations in 2021–22 are seven times higher than those measured in 2008–10
- Modelling shows that targeted cuts in wood-burning and traffic could halve PM_{2.5} exposures and save ~1 000+ lives region-wide (i.e., West Midlands)

PM₁₀ concentrations indoors (while using combustion appliances and room background air) and outdoors.

E.D. Vicente et al., 2020, STOTEN


Indoor air quality inequality

Low-income populations tend to

- live in areas with higher levels of outdoor air pollution (e.g., closer to busy roads)
- smoke indoors, spend more time cooking, and may be less likely to open windows to ventilate due to security concerns
- have higher underlying rates of disease than the rest of the population.

But we don't yet have sufficient data to quantify these impacts

Impacts of house retrofitting on indoor environment

Net Zero Neighbourhoods

Place-based Decarbonisation and Air Quality

Programme Origins

The Net Zero Neighbourhoods Approach

Retrofit and Indoor Air Quality

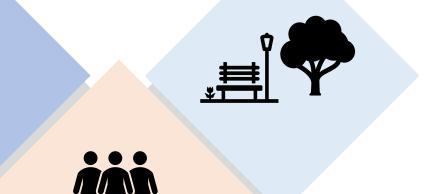
Where are we now?

Programme Origin

Decarbonise (or make Net Zero ready) 1.2m homes by 2041

18 years – 63,000 homes per year

50 working weeks per year – 1,263 homes per week

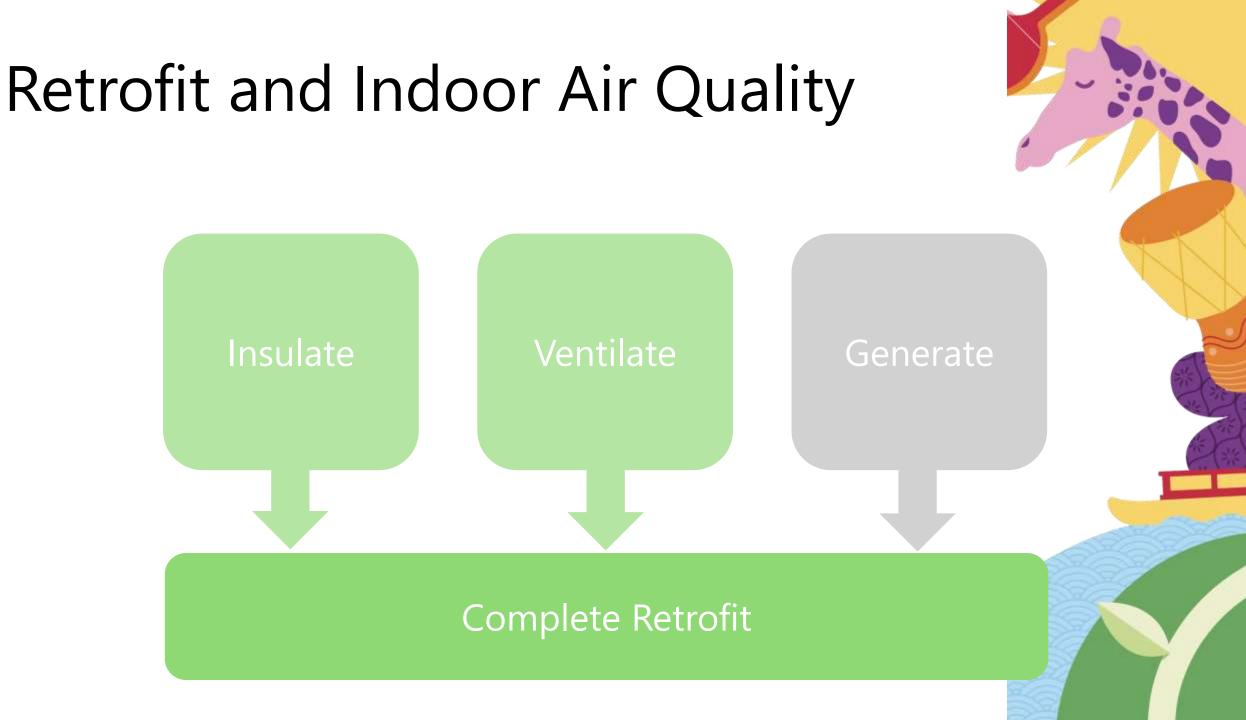

40 hours per working week – 32 homes per hour

1 home every 2 minutes

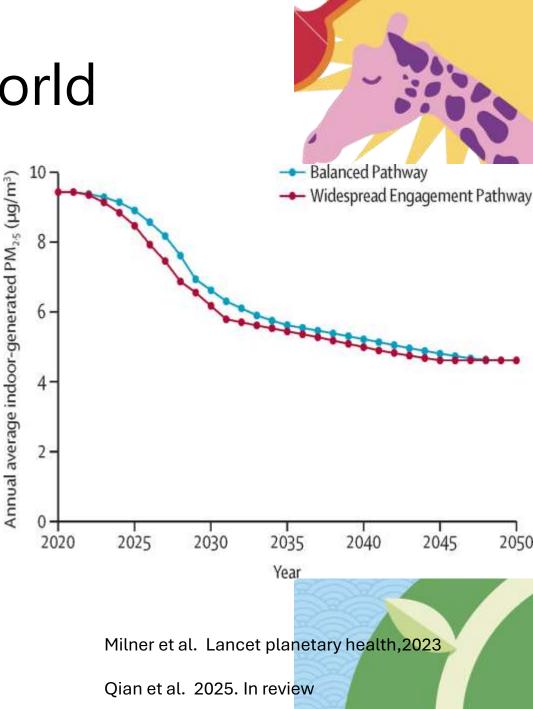
Can we develop a **replicable funding and delivery model** for creating **low carbon energy communities** on a **street-by-street or neighbourhood-by-neighbourhood** basis.

The NZN Approach

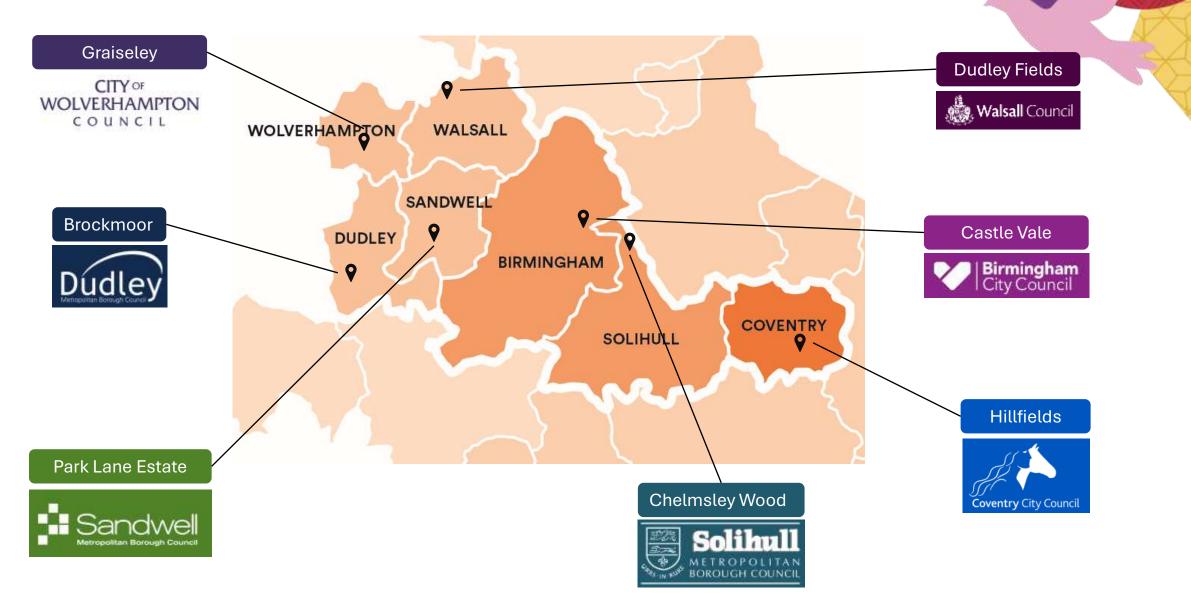
Comfortable energy efficient **homes** with affordable low carbon heating


Community co-production & design Neighbourhood regeneration and **green** spaces

Low carbon **mobility** and active travel infrastructure



Community **energy** and climate resilience opportunities



Indoor Air Quality in a NZ world

- Improved indoor environment
- Risk of worsening indoor air quality inequalities
 - Damp/Mould
 - Poorer IAQ
- UKRI/NIHR funded INHABIT hub: realising health cobenefits of NZ transition

Where are we now?

Thank you

Visit our <u>website</u> for templates, blogs and other updates!

Email us at: NetZeroNeighbourhoods@wmca.org.uk

Improving indoor air quality

What is the most important focus in addressing indoor air quality issues?

- Is there enough research to advise on how to tackle these issues and where do we need to focus further research?
- Where should we focus behaviour change and awareness raising?
- How do we create consistent messaging around indoor air quality regionally?
- As we build new homes or retrofit existing homes, how do we get this on the radar of decision makers?

Break

14:45 - 15:00

West Midlands Combined Authority

Plenary and panel discussion

Closing remarks

Ed Cox

Executive Director of Strategy, Economy and Net Zero and Deputy Chief Executive, WMCA

Thank you

wmca.org.uk/air-quality

environment@wmca.org.uk

